Mixed-flow fans (MFF) are widely used to reduce the heat stress in dairy cows in summer. Our research team developed MFFs with a newly shaped diffuser with the length of 250 mm and the circumferential angle of 150°, which have better performance in terms of maximum flow flux and energy efficiency. However, how the elevation angle of the diffuser influences the performance of MFFs and how the optimal fan perform in the field experiment has not been studied yet. In this paper, the diffuser was optimized by CFD (Computational Fluid Dynamics) simulation of the fan and a laboratory prototype test. An orthogonal test showed no interaction among length, circumferential angle, and elevation angle. The diffuser with an elevation angle of 10° performed better than that with an elevation angle of 0°, showing increased jet lengths, flow flux, and energy efficiency by 0.5 m, 0.69%, and 1.39%, respectively, and attaining greater axial wind speeds and better non-uniformity coefficients at the dairy cattle height. Then, through on-site controlled trials, we found that the 10°/150°/250 mm diffusers increased the overall average wind speeds by 9.4% with respect to the MFFs without a diffuser. MFFs with the newly shaped diffuser were used for field tests, and their effectiveness in alleviating heat stress in dairy cows was evaluated by testing environmental parameters and dairy cows’ physiological indicators. Although the temperature–humidity indexes (THIs) in the experimental barn with the optimized fan at different times were lower than those in the controlled barn, the environmental conditions corresponded to moderate heat stress. However, this was not consistent with cow's respiratory rate and rectal temperature. Finally, on the basis of the CFD simulation of a dairy cow barn, the equivalent temperature of cattle (ETIC), which takes into account the effect of air velocity, showed that the environment caused moderate heat stress only at 13:00, but not at other times of the day. This shows that ETIC is more accurate to evaluate heat stress.
Abstract. Mixing fans (MFFs) are widely used in ventilation of agricultural buildings to improve the uniformity of the air supply, thereby improving the ventilation efficiency. In order to improve the ventilation performance of MFFs, a new visor-shaped diffuser was designed and installed on a MFF. The angle and the length of the diffuser were crucial parameters that affected the performance of the MFFs with the diffusers. Thereby, in this study numerical simulation with 42 diffusers of different angles (ranged from 90-270°) and different lengths (ranged from 150-650 mm) with the MFF were studied with Computational Fluid Dynamics (CFD) simulation to acquire the optimal design of diffusers. The numerical simulation results show that the diffusers of 90°/450 mm, 120°/350 mm, and 150°/250 mm with jet lengths of up to 5.85, 5.90, and 5.85 m, respectively, had better performances among all the diffusers. The optimal prototype diffusers of 90°/450 mm, 120°/350 mm, and 150°/250 mm of MFFs were tested by laboratory study and field test. The test was conducted in wind speed distributions at distances of 0.5 to 1.0 m from the axial of MFFs. During the test, we evaluated the MFFs performance such as maximum flow flux, maximum energy efficiency, and non-uniformity coefficient. The diffuser of 150°/250 mm showed the best performance, increasing the flow flux and energy efficiency by 3.8% and 11%, respectively, and obtain higher axial wind speeds and larger non-uniformity coefficients. Finally, the diffusers of 150°/250 mm were tested in a free-stall dairy barn. The field test result shows that the diffusers of 150°/250 mm increased overall average wind speeds by 7.4% and local average wind speeds at bedding 1 and bedding 2 by 31.0% and 27.7%, respectively, which agreed with our numerical simulation and laboratory test. This optimal design of mixing fans could be applied to improve the air mixing in agricultural buildings. Keywords: Agricultural buildings, Diffuser, Mixing fan, Numerical simulation, Optimization.
Exploring the behaviour of sprayed water droplets on dairy cow hair during the spraying process is of great significance to improve the effects of this process on cooling a dairy cow’s body. In this paper, we use a high-speed camera to examine the sprayed droplets of different diameters and then analyse the experimental results. The results show that the movements of sprayed droplets on the simulated dairy cow (SDC) surface can be divided into four categories: random scattering, aggregation, multiple deformations and flow slipping. Sprayed droplets with diameters of 0.56 mm and 0.8 mm exhibit more frequent random scattering than do other droplets. However, this behaviour is unfavourable for cooling the dairy cow body. By analysing the dimensionless parameter B, we find that sprayed droplets with a diameter of 1.1 mm, which have a higher frequency of aggregation, is not conducive for cooling the dairy cow body. However, multiple deformations can contribute to the cooling process of a SDC. By analysing the relationship between We and γ, we can find the range of We and γ in which the behaviour of random scattering and multiple deformations may appear more frequently. The results show that sprayed droplets with diameters of 0.8 mm–1.0 mm exhibit multiple deformations more frequently, which is beneficial for the cooling process of a SDC.
Spray cooling is widely used in relieving heat stress in dairy cows during summer, in which the cooling effect is highly correlated to the diameter of water droplet. To optimize the average diameter of spraying droplet (ADSD) in the process of heat transfer, a theoretical analysis was performed based on the enthalpy difference theory in this study. A platform was built to simulate the processes of spray cooling and its heat stress alleviation to dairy cows in field, and a field experiment was applied to verify the diameter of water droplets suitable for spray cooling. Heat exchange was calculated for eighteen different ADSD in three different environment conditions in the laboratory. The spraying droplets with eighteen diameters were formed by using six different nozzles under the combinations of three pressures and two wind speeds conditions, which were controlled by heaters. The relationship between the ADSD and heat exchange was established with the purpose to determine the appropriate diameter for practical production. In the field test, body temperature, rectal temperature, and respiratory rate of dairy cows were monitored, and the heat exchange was analyzed to verify the optimal diameter spraying cooling in summer. Results showed that the heat exchange generally increased as ADSD increased, and maximum heat exchanges were reached when the ADSD was averaged at 0.914 mm and 0.995 mm, under which the models of the corresponding nozzles were 9080 and 9010, respectively. After that, the heat exchange decreased as the ADSD continued to increase. Field experiment indicated that the best cooling effect could be achieved with the ADSD of 0.947 mm, and the water consumption for spray cooling was reduced by 22.8% under the scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.