The activation of PI3K/Akt and the overexpression of fatty acid synthase (FASN) are frequently observed in human osteosarcoma (OS). In the present study, in order to investigate the possible association between the phosphorylation of Akt and FASN expression, immunohistochemical staining was conducted on 24 OS specimens from patients with pulmonary metastasis, which revealed a significant positive correlation between phosphorylated Akt (p-Akt) and the expression of FASN (R=0.469, P=0.04). To investigate the association between p-Akt and FASN in vitro, human U2-OS OS cells were treated with FASN-specific RNAi plasmid or LY294002 (an inhibitor of PI3k/Akt). The mRNA levels of Akt and FASN were measured by real-time PCR. Western blot analysis was also performed to detect the protein experession of PI3K, Akt, p-Akt and FASN. The results demonstrated that the PI3K/Akt signaling pathway modulates FASN expression; the inhibition of FASN resulted in the downregulation of p-Akt in the U2-OS cells. Furthermore, the effects induced by the inhibition of the activity of p-Akt or FASN on the malignant phenotype of U2-OS cells were investigated, demonstrating that the malignant phenotype was inhibited by suppressing the activity of PI3K/Akt or FASN in the U2-OS cells. The findings from our study suggest the existence of a positive feedback regulation between Akt phosphorylation and FASN expression and that this loop may play an important role in the malignant phenotype of OS cells.
Abstract. Increasing evidence suggests that fatty acid synthase (FASN) is crucial in the carcinogenesis of various types of tumor. In addition, the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, which is closely associated with cellular metabolism, affects cancer biology. However, whether the malignant phenotype of osteosarcoma (OS) cells is regulated by the PI3K/Akt/FASN signaling pathway and how the PI3K family specific inhibitor, 2-(4-morpholinyl)-8-phenyl-chromone (LY294002) affects the malignant phenotype of OS cells remains to be elucidated. In the present study, U2-OS and MG-63 cells were treated with LY294002 and subsequently western blot analysis was used to examine Akt, p-Akt and FASN protein expression. Additionally, FASN mRNA was detected by reverse transcription quantitative polymerase chain reaction. MTT and fluorescence-activated cell sorting assays were used to assess proliferation and apoptosis. Migration and invasion were investigated using wound healing and transwell invasion assays. The results demonstrated that LY294002 suppressed the PI3K/Akt/FASN signaling pathway. However, the malignant phenotypes of OS cells mentioned above were significantly inhibited. The present results indicated that LY294002 inhibits the malignant phenotype of OS cells via modulation of the PI3K/Akt/FASN signaling pathway in vitro and may be a new therapeutic strategy for the management of OS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.