Dynamic regulation of diverse nuclear processes is intimately linked to covalent modifications of chromatin. Much attention has focused on methylation at lysine 4 of histone H3 (H3K4), owing to its association with euchromatic genomic regions. H3K4 can be mono-, di- or tri-methylated. Trimethylated H3K4 (H3K4me3) is preferentially detected at active genes, and is proposed to promote gene expression through recognition by transcription-activating effector molecules. Here we identify a novel class of methylated H3K4 effector domains--the PHD domains of the ING (for inhibitor of growth) family of tumour suppressor proteins. The ING PHD domains are specific and highly robust binding modules for H3K4me3 and H3K4me2. ING2, a native subunit of a repressive mSin3a-HDAC1 histone deacetylase complex, binds with high affinity to the trimethylated species. In response to DNA damage, recognition of H3K4me3 by the ING2 PHD domain stabilizes the mSin3a-HDAC1 complex at the promoters of proliferation genes. This pathway constitutes a new mechanism by which H3K4me3 functions in active gene repression. Furthermore, ING2 modulates cellular responses to genotoxic insults, and these functions are critically dependent on ING2 interaction with H3K4me3. Together, our findings establish a pivotal role for trimethylation of H3K4 in gene repression and, potentially, tumour suppressor mechanisms.
The Sir2 chromatin regulatory factor links maintenance
of genomic stability to life span extension in yeast. The mammalian Sir2
family member SIRT6 has been proposed to have analogous functions, because
SIRT6-deficiency leads to shortened life span and an aging-like
degenerative phenotype in mice, and SIRT6 knockout cells exhibit genomic
instability and DNA damage hypersensitivity. However, the molecular mechanisms
underlying these defects are not fully understood. Here, we show that
SIRT6 forms a macromolecular complex with the DNA double-strand break (DSB)
repair factor DNA-PK (DNA-dependent protein kinase) and promotes DNA DSB
repair. In response to DSBs, SIRT6 associates dynamically with chromatin
and is necessary for an acute decrease in global cellular acetylation
levels on histone H3 Lysine 9. Moreover, SIRT6 is required for
mobilization of the DNA-PK catalytic subunit (DNA-PKcs) to chromatin in response
to DNA damage and stabilizes DNA-PKcs at chromatin adjacent to an induced
site-specific DSB. Abrogation of these SIRT6 activities leads to impaired
resolution of DSBs. Together, these findings elucidate a mechanism whereby
regulation of dynamic interaction of a DNA repair factor with chromatin
impacts on the efficiency of repair, and establish a link between chromatin
regulation, DNA repair, and a mammalian Sir2 factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.