Obesity and metabolic syndrome are associated with glomerulosclerosis and proteinuria, but the mechanisms are not known. The purpose of this study was to determine if there is altered renal lipid metabolism and increased expression of sterol regulatory elementbinding proteins (SREBPs) in a model of diet-induced obesity. C57BL/6J mice that were fed a high fat, 60 kcal % saturated (lard) fat diet (HFD) developed obesity, hyperglycemia, and hyperinsulinemia compared with those that were fed a low fat, 10 kcal % fat diet (LFD). In contrast, A/J mice were resistant when fed the same diet. C57BL/6J mice with HFD exhibited significantly higher levels of renal SREBP-1 and SREBP-2 expression than those mice with LFD, whereas in A/J mice there were no changes with the same treatment. The increases in SREBP-1 and SREBP-2 expression in C57BL/6J mice resulted in renal accumulation of triglyceride and cholesterol. There were also significant increases in the renal expression of plasminogen activator inhibitor-1 (PAI-1), vascular endothelial growth factor (VEGF), type IV collagen, and fibronectin, resulting in glomerulosclerosis and proteinuria. To determine a role for SREBPs per se in modulating renal lipid metabolism and glomerulosclerosis we performed studies in SREBP-1c ؊/؊ mice. In contrast to control mice, in the SREBP-1c ؊/؊ mice with HFD the accumulation of triglyceride was prevented, as well as the increases in PAI-1, VEGF, type IV collagen, and fibronectin expression. Our results therefore suggest that diet-induced obesity causes increased renal lipid accumulation and glomerulosclerosis in C57BL/6J mice via an SREBP-1c-dependent pathway.Obesity is a known risk factor for cardiovascular disease (1) and type-2 diabetes mellitus (2) and has been proposed to play a role in the pathogenesis of diabetic nephropathy (3). Obesity is one of the defining criteria of the metabolic syndrome as proposed by the National Cholesterol Education Program Adult Treatment Panel III (4) and the World Health Organization (5). The metabolic syndrome, which is characterized by the concurrent existence of obesity, dyslipidemia, hyperglycemia, hyperinsulinemia, and hypertension, has been shown to be a strong and independent risk factor for cardiovascular, and all cause mortality (6, 7) as well as the development of microalbuminuria and chronic kidney disease (8).Obesity is considered a major generator of metabolic syndrome (9). Early in the course of obesity-initiated metabolic syndrome, structural and functional changes similar to diabetic kidney disease occur (10). These changes include glomerular hyperfiltration, glomerular basement membrane thickening, mesangial cell proliferation, mesangial matrix thickening, and expansion of Bowman's capsule (10) and are considered precursors to more severe renal injury. Severe obesity has been associated with the eventual development of focal and segmental glomerulosclerosis (11). Although incompletely understood, several hemodynamic, hormonal, and metabolic factors have been proposed to contribute to t...
Diabetic kidney disease has been associated with the presence of lipid deposits, but the mechanisms for the lipid accumulation have not been fully determined. In the present study, we found that db/db mice on the FVB genetic background with loss-of-function mutation of the leptin receptor (FVB-Lepr db mice or FVB db/db ) develop severe diabetic nephropathy, including glomerulosclerosis, tubulointerstitial fibrosis, increased expression of type IV collagen and fibronectin, and proteinuria, which is associated with increased renal mRNA abundance of transforming growth factor-, plasminogen activator inhibitor-1, and vascular endothelial growth factor. Electron microscopy demonstrates increases in glomerular basement membrane thickness and foot process (podocyte) length. We found that there is a marked increase in neutral lipid deposits in glomeruli and tubules by oil red O staining and biochemical analysis for cholesterol and triglycerides. We also detected a significant increase in the renal expression of adipocyte differentiation-related protein (adipophilin), a marker of cytoplasmic lipid droplets. We examined the expression of sterol regulatory element-binding protein (SREBP)-1 and -2, transcriptional factors that play an important role in the regulation of fatty acid, triglyceride, and cholesterol synthesis. We found significant increases in SREBP-1 and -2 protein levels in nuclear extracts from the kidneys of FVB db/db mice, with increases in the mRNA abundance of acetyl-CoA carboxylase, fatty acid synthase, and 3-hydroxy-3-methylglutaryl-CoA reductase, which mediates the increase in renal triglyceride and cholesterol content. Our results indicate that in FVB db/db mice, renal triglyceride and cholesterol accumulation is mediated by increased activity of SREBP-1 and -2. Based on our previous results with transgenic mice overexpressing SREBP-1 in the kidney, we propose that increased expression of SREBPs plays an important role in causing renal lipid accumulation, glomerulosclerosis, tubulointerstitial fibrosis, and proteinuria in mice with type 2 diabetes.
In Akita and OVE26 mice, two genetic models of type 1 diabetes, diabetic nephropathy is characterized by mesangial expansion and loss of podocytes, resulting in glomerulosclerosis and proteinuria, and is associated with increased expression of profibrotic growth factors, proinflammatory cytokines, and increased oxidative stress. We have also found significant increases in renal triglyceride and cholesterol content. The increase in renal triglyceride content is associated with 1) increased expression of sterol regulatory element-binding protein (
Mesenchymal stem cell (MSC) transplantation is now considered as an effective treatment strategy for traumatic spinal cord injury (SCI). However, several key issues remain unresolved, including low survival rates, cell dedifferentiation, and tumor formation. Recent studies have demonstrated that the therapeutic effect of transplanted stem cells is primarily paracrine mediated. Exosomes are an important paracrine factor that can be used as a direct therapeutic agent. However, there are few reports on the application of exosomes derived from bone MSCs (BMSCs-Exos) in treating SCI. In this study, we demonstrated that BMSCs-Exos possessed robust proangiogenic properties, attenuated neuronal cells apoptosis, suppressed glial scar formation, attenuated lesion size, suppressed inflammation, promoted axonal regeneration, and eventually improved functional behavioral recovery effects after traumatic SCI. Briefly, lesion size was decreased by nearly 60%, neuronal apoptosis was attenuated by nearly 70%, glial scar formation was reduced by nearly 75%, average blood vessel density was increased by nearly 60%, and axonal regeneration was increased by almost 80% at day 28 after SCI in the BMSC-Exos group compared to the control group. Using a series of in vitro functional assays, we also confirmed that treatment with BSMCs-Exos significantly enhanced human umbilical vein endothelial cell proliferation, migration, and angiogenic tubule formation, attenuated neuronal cells apoptosis, and suppressed nitric oxide release in microglia. Moreover, our study demonstrated that administration of BMSCs-Exos suppressed inflammation efficiently after traumatic SCI and suppressed activation of A1 neurotoxic reactive astrocytes. In conclusion, our study suggested that the application of BMSCs-Exos may be a promising strategy for traumatic SCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.