Due to production space and operating environment requirements, mine production equipment often breaks down, seriously affecting the mine’s production schedule. To ensure the smooth completion of the haulage operation plan under abnormal conditions, a model of the haulage equipment rescheduling plan based on the random simulation of equipment breakdowns is established in this paper. The model aims to accomplish both the maximum completion rate of the original mining plan and the minimum fluctuation of the ore grade during the rescheduling period. This model is optimized by improving the wolf colony algorithm and changing the location update formula of the individuals in the wolf colony. Then, the optimal model solution can be used to optimize the rescheduling of the haulage plan by considering equipment breakdowns. The application of the proposed method in an underground mine revealed that the completion rate of the mine’s daily mining plan reached 83.40% without increasing the amount of equipment, while the ore quality remained stable. Moreover, the improved optimization algorithm converged quickly and was characterized by high robustness.
In the process of mining graphite mine, rock mass is often subjected to dynamic loads such as blasting or mechanical crushing, which involves dynamic responses of different strain rates, and blasting and crushing effect are affected by the rock dynamic properties and damage specials. The dynamic response characteristics and damage rule of graphite ore rock under different strain rates are very important but rarely studied in the past. To study these issues and provide support for graphite ore rock mining, the dynamic compression tests of graphite ore rock under five kinds of impact pressures were designed and carried out by using the Split Hopkinson Pressure Bar (SHPB) test system, combining with the high-speed photography system and crushing screening tests. The dynamic characteristics, crushing process, crushing mode, crushing form and fragmentation distribution of the graphite ore rock under different strain rates were analyzed. The results show that the dynamic characteristics of the graphite ore rock have obvious strain rate effect. The hardening coefficient (DIF) is positively correlated with the cubic root of strain rate, and the softening factor (K) is negatively correlated with the cubic root of strain rate. Shear failure mainly occurs in the graphite ore rock under impact load, and the crushing process can be divided into five stages, they are compaction, crack initiation, crack expansion and penetration, fragmentation collision and fragmentation fall. In addition, the crushed blocks are mainly triangular pyramid (or cone-like) fine granular and powder. The broken fragments of the graphite ore rock are in accord with the fractal geometry characteristics. That is, the average broken particle size (dS) decreases linearly with the increase of strain rate, and the fractal dimension (Da) increases weakly with the increase of strain rate. Based on D-P fracture criterion and Weibull distribution model, the dynamic damage constitutive model of the graphite ore rock was established, and the correlation between strain rate and Weibull distribution parameters (m and F0) was used to reasonably modify the damage constitutive model. The modified damage constitutive model curve is in good agreement with the experimental curve, which can basically reflect the strain rate effect of the dynamic characteristics of the graphite ore rock and the evolution characteristics of the dynamic stress–strain curve at different stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.