HfO 2 -based unconventional ferroelectric materials were recently discovered and have attracted a great deal of attention in both academia and industry. The growth of epitaxial Si-doped HfO 2 films has opened up a route to understand the mechanism of ferroelectricity. Here, we used pulsed laser deposition to grow epitaxial Si-doped HfO 2 films in different orientations of N-type SrTiO 3 substrates. Polar nanodomains can be written and read using piezoforce microscopy, and these domains are reversibly switched with a phase change of 180°. Films with different thicknesses displayed a coercive field E c and a remnant polarization P r of approximately 4−5 MV/ cm and 8−32 μC/cm 2 , respectively. X-ray diffraction and high-resolution transmission electron microscopy (HRTEM) results identified that the as-grown Si-doped HfO 2 films have strained fluorite structures. The ABAB stacking mode of the Hf atomic grid observed by HRTEM clearly demonstrates that the ferroelectricity originates from the noncentrosymmetric Pca2 1 polar structure. Combined with soft X-ray absorption spectra, the results showed that the Pca2 1 ferroelectric crystal structure manifested as an O sublattice distortion by the effect of the interface strain and Si dopant interactions, resulting in a nanoscaled ferroelectric ordered state because of further crystal splitting.
In this study, we used pulsed laser deposition to successfully grow epitaxial Hf0.5Zr0.5O2 (HZO) films on (001)-, (011)- and (111)-oriented yttria-stabilized zirconia (YSZ) substrates using TiN as the bottom electrode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.