Abstract. New finite element methods based on Cartesian triangulations are presented for two dimensional elliptic interface problems involving discontinuities in the coefficients. The triangulations in these methods do not need to fit the interfaces. The basis functions in these methods are constructed to satisfy the interface jump conditions either exactly or approximately. Both non-conforming and conforming finite element spaces are considered. Corresponding interpolation functions are proved to be second order accurate in the maximum norm. The conforming finite element method has been shown to be convergent. With Cartesian triangulations, these new methods can be used as finite difference methods. Numerical examples are provided to support the methods and the theoretical analysis.Key words. interface problems, Cartesian grid, immersed interface method, finite element method, jump conditions, conforming and non-conforming basis functions, error analysis.
We present a general error estimation framework for a finite volume element (FVE) method based on linear polynomials for solving second-order elliptic boundary value problems. This framework treats the FVE method as a perturbation of the Galerkin finite element method and reveals that regularities in both the exact solution and the source term can affect the accuracy of FVE methods. In particular, the error estimates and counterexamples in this paper will confirm that the FVE method cannot have the standard O(h 2) convergence rate in the L 2 norm when the source term has the minimum regularity, only being in L 2 , even if the exact solution is in H 2 .
This article discusses an immersed finite element (IFE) space introduced for solving a second-order elliptic boundary value problem with discontinuous coefficients (interface problem). The IFE space is nonconforming and its partition can be independent of the interface. The error estimates for the interpolation of a function in the usual Sobolev space indicate that this IFE space has an approximation capability similar to that of the standard conforming linear finite element space based on body-fit partitions. Numerical examples of the related finite element method based on this IFE space are provided.
This article presents new immersed finite element (IFE) methods for solving the popular second order elliptic interface problems on structured Cartesian meshes even if the involved interfaces have nontrivial geometries. These IFE methods contain extra stabilization terms introduced only at interface edges for penalizing the discontinuity in IFE functions. With the enhanced stability due to the added penalty, not only these IFE methods can be proven to have the optimal convergence rate in an energy norm provided that the exact solution has sufficient regularity, but also numerical results indicate that their convergence rates in both the H 1 -norm and the L 2 -norm do not deteriorate when the mesh becomes finer which is a shortcoming of the classic IFE methods in some situations. Trace inequalities are established for both linear and bilinear IFE functions that are not only critical for the error analysis of these new IFE methods, but also are of a great potential to be useful in error analysis for other related IFE methods.
This article discusses a bilinear immersed finite element (IFE) space for solving second-order elliptic boundary value problems with discontinuous coefficients (interface problem). This is a nonconforming finite element space and its partition can be independent of the interface. The error estimates for the interpolation of a Sobolev function indicate that this IFE space has the usual approximation capability expected from bilinear polynomials. Numerical examples of the related finite element method are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.