A 3D highly conductive urchin-like NiCo₂S₄ nanostructure has been successfully prepared using a facile precursor transformation method. Remarkably, the NiCo₂S₄ electroactive material demonstrates superior electrochemical performance with ultrahigh high-rate capacitance, very high specific capacitance, and excellent cycling stability.
A biomimetic (titin protein molecular structure) strategy is reported for preparing transparent and healable elastomers featuring supertoughness (345 MJ m ) and high tensile strength (44 MPa) after self-healing enabled by hierarchical (single, double, and quadruple) hydrogen-bonding moieties in the polymer backbone. The rigid domain containing hierarchical H-bonds formed with urethane, urea, and 2-ureido-4[1H]-pyrimidinone groups leads to a durable network structure that has enhanced mechanical properties and is also dynamic for rapid self-healing. Healable polymers with hierarchical hydrogen-bonding interactions show excellent recoverability and high energy dissipation owing to the durable interaction between polymer chains. This biomimetic strategy of using hierarchical hydrogen bonds as building blocks is an alternative approach for obtaining dynamic, strong, yet smart self-healing polymers for heavy-duty protection materials and wearable electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.