Long noncoding RNAs (lncRNAs) affect gene expression through a wide range of mechanisms and are considered as important regulators in many essential biological processes. A large number of lncRNA transcripts have been predicted or identified in plants in recent years. However, the biological functions for most of them are still unknown. In this study, we identified an Arabidopsis (Arabidopsis thaliana) lncRNA, DROUGHT INDUCED lncRNA (DRIR), as a novel positive regulator of the plant response to drought and salt stress. DRIR was expressed at a low level under nonstress conditions but can be significantly activated by drought and salt stress as well as by abscisic acid (ABA) treatment. We identified a T-DNA insertion mutant, drir D , which had higher expression of the DRIR gene than the wild-type plants. The drir D mutant exhibits increased tolerance to drought and salt stress. Overexpressing DRIR in Arabidopsis also increased tolerance to drought and salt stress of the transgenic plants. The drir D mutant and the overexpressing seedlings are more sensitive to ABA than the wild type in stomata closure and seedling growth. Genome-wide transcriptome analysis demonstrated that the expression of a large number of genes was altered in drir D and the overexpressing plants. These include genes involved in ABA signaling, water transport, and other stress-relief processes. Our study reveals a mechanism whereby DRIR regulates the plant response to abiotic stress by modulating the expression of a series of genes involved in the stress response.
The regulation of hypocotyl elongation is important for plant growth. Microtubules play a crucial role during hypocotyl cell elongation. However, the molecular mechanism underlying this process is not well understood. In this study, we describe a novel Arabidopsis thaliana microtubule-destabilizing protein 25 (MDP25) as a negative regulator of hypocotyl cell elongation. We found that MDP25 directly bound to and destabilized microtubules to enhance microtubule depolymerization in vitro. The seedlings of mdp25 mutant Arabidopsis lines had longer etiolated hypocotyls. In addition, MDP25 overexpression resulted in significant overall shortening of hypocotyl cells, which exhibited destabilized cortical microtubules and abnormal cortical microtubule orientation, suggesting that MDP25 plays a crucial role in the negative regulation of hypocotyl cell elongation. Although MDP25 localized to the plasma membrane under normal conditions, increased calcium levels in cells caused MDP25 to partially dissociate from the plasma membrane and move into the cytosol. Cellular MDP25 bound to and destabilized cortical microtubules, resulting in their reorientation, and subsequently inhibited hypocotyl cell elongation. Our results suggest that MDP25 exerts its function on cortical microtubules by responding to cytoplasmic calcium levels to mediate hypocotyl cell elongation.
SummaryIn ciliated cells, two types of microtubules can be categorized: cytoplasmic and axonemal. It has been shown that axonemal tubulins come from a 'cytoplasmic pool' during cilia regeneration. However, the identity and regulation of this 'pool' is not understood. Previously, we have shown that Chlamydomonas kinesin-13 (CrKin13) is phosphorylated during flagellar regeneration, and required for proper flagellar assembly. In the present study, we show that CrKin13 regulates depolymerization of cytoplasmic microtubules to control flagellar regeneration. After flagellar loss and before flagellar regeneration, cytoplasmic microtubules were quickly depolymerized, which was evidenced by the appearance of sparse and shorter microtubule arrays and increased free tubulins in the cell body. Knockdown of CrKin13 expression by RNA interference inhibited depolymerization of cytoplasmic microtubules and impaired flagellar regeneration. In vitro assay showed that CrKin13 possessed microtubule depolymerization activity. CrKin13 underwent phosphorylation during microtubule depolymerization, and phosphorylation induced targeting of CrKin13 to microtubules. The phosphorylation of CrKin13 occurred at residues S100, T469 and S522 as determined by mass spectrometry. Abrogation of CrKin13 phosphorylation at S100 but not at other residues by inducing point mutation prevented CrKin13 targeting to microtubules. We propose that CrKin13 depolymerizes cytoplasmic microtubules to provide tubulin precursors for flagellar regeneration.
Light significantly inhibits hypocotyl cell elongation, and dark-grown seedlings exhibit elongated, etiolated hypocotyls. Microtubule regulatory proteins function as positive or negative regulators that mediate hypocotyl cell elongation by altering microtubule organization. However, it remains unclear how plants coordinate these regulators to promote hypocotyl growth in darkness and inhibit growth in the light. Here, we demonstrate that WAVE-DAMPENED 2-LIKE3 (WDL3), a microtubule regulatory protein of the WVD2/WDL family from Arabidopsis thaliana, functions in hypocotyl cell elongation and is regulated by a ubiquitin-26S proteasome-dependent pathway in response to light. WDL3 RNA interference Arabidopsis seedlings grown in the light had much longer hypocotyls than controls. Moreover, WDL3 overexpression resulted in overall shortening of hypocotyl cells and stabilization of cortical microtubules in the light. Cortical microtubule reorganization occurred slowly in cells from WDL3 RNA interference transgenic lines but was accelerated in cells from WDL3-overexpressing seedlings subjected to light treatment. More importantly, WDL3 protein was abundant in the light but was degraded through the 26S proteasome pathway in the dark. Overexpression of WDL3 inhibited etiolated hypocotyl growth in regulatory particle nonATPase subunit-1a mutant (rpn1a-4) plants but not in wild-type seedlings. Therefore, a ubiquitin-26S proteasome-dependent mechanism regulates the levels of WDL3 in response to light to modulate hypocotyl cell elongation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.