We used the 11,303 return air roadway of the Hongqingliang coal mine as the engineering background for a study exploring the impact of the structural morphology of the roadway on the stress distribution characteristics and the stability of a weakly cemented soft-rock mine roadway. This work studies the evolution law of stress and deformation, and the plastic zone of weakly cemented soft-rock roadways with retaining the top or bottom coal seams. The results show that when retaining the top coal is replaced by the bottom coal, the high-stress zone of the vertical stress is reduced, the peak stress is decreased, and the stress concentration coefficient is slightly reduced from 1.67 to 1.64. The peak value of the vertical displacement of the roof of the shaft which was 78.4% of that of the top coal also decreases significantly, while the peak value of the vertical displacement of the floor, which was 1.37 times that of the top coal, increases. The equal area method was used to change the aspect ratio of the roadway. When the aspect ratio decreased from 1.38 to 0.88, the high-stress zone of the vertical stress was reduced, the stress peak decreased, and the stress concentration coefficient decreased from 1.8 to 1.75. The vertical displacement of the roof increased by 27.7% from 10.91 mm to 13.93 mm, and the vertical displacement of the floor increased by 15.2% from 6.60 mm to 7.60 mm. The plastic failure range was significantly reduced, particularly at the bottom corners. These findings show that structural morphology has a great influence on the floor heave of weakly cemented soft rock. Reasonable retention of the top or bottom coal and the aspect ratio of the roadway can prevent the deformation and failure of the roadway in weakly cemented soft rock.
Under the influence of coal mining, the gravel in mining tunnel sections of a fault fracture zone is prone to collapse, and the collapse accumulation body will block the tunnel, which has a very adverse influence on the safety production of coal mining and the evacuation of personnel after underground disasters. The macroscopic and mechanical characteristics of the collapse accumulation body have been studied extensively in previous works. The purpose of this paper is to provide theoretical support and reference for the rapid excavation of the tunnel blocked by the collapse accumulation body in the fault fracture zone. Taking the fault fracture zone in the tunnel as the research background, the physical characteristics and boundary mechanical characteristics of the collapse accumulation body in the fault fracture zone are studied by the method of combining on-site investigation and theoretical analysis. The results show that the force acting on the boundary on both sides of the accumulation body is passive resistance from the side wall, which is derived from the slip effect of the accumulation body slope. Similarly, the unstable boundary of the fault fracture zone caused by tunnel instability is elliptical, and the overlying load of the rescue channel to be excavated in the accumulation body is limited. On the basis of the collapse instability dimensions of the broken zone of the tunnel surrounding the rock, the calculation formulas of the height of the accumulation body and the horizontal force at the boundary were established, respectively, under two conditions of whether the collapse space was filled, and whether the curve relationship between the distribution of the horizontal force at the boundary of the accumulation body and the buried depth in the accumulation body was obtained.
The water inrush from the roof of the coal mine is closely related to the movement failure of overburdened rock and the height of the water-conducting fracture zone. In this work, based on the research background of water disaster prevention and control of the No. 2 coal seam roofs in Jinxinda Coal Mine, the stability characteristics of overlying rock in the working face are analyzed through combining theoretical analysis and numerical simulation. According to the theory of key strata, the fracture conditions of hard rock and soft rock are analyzed, and the maximum height of the water-conducting fracture zone in the 201 working face is calculated to be 35.72 m. The crack evolution law of composite roofs was simulated and analyzed using discrete element software. It was found that the basic roof (4.50 m thick) and the fine sandstone (7.64 m thick) are the two inferior key strata, and the maximum development height of the water-conducting crack is 36 m, which is basically consistent with the field measured results. Transient electromagnetic exploration technology was used to detect the working face, and nine abnormal areas were found. In order to prevent the influence of water disasters in abnormal areas during mining, drilling verification is carried out in abnormal areas. According to the analysis of drilling verification, there are no water disasters in the geophysical anomaly area, but the management of the roof after mining should be strengthened during mining. The expected research results not only enrich the rock formation control theory and roof water inrush mechanism; they also have important practical significance in guiding the safety production of a coal mine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.