Our results imply that EGFR-TKIs could not only directly inhibit tumor cell viability but also indirectly enhance antitumor immunity through the downregulation of PD-L1. Anti-PD-1/PD-L1 antibodies could be an optional therapy for EGFR-TKI sensitive patients, especially for EGFR-TKIs resistant NSCLC patients with EGFR mutation. Combination of EGFR-TKIs and anti-PD-1/PD-L1 antibodies treatment in NSCLC is not supported by the current study but warrant more studies to move into clinical practice.
PD-L1 expression is a feature of Epstein-Barr virus (EBV) associated malignancies such as nasopharyngeal carcinoma (NPC). Here, we found that EBV-induced latent membrane protein 1 (LMP1) and IFN-γ pathways cooperate to regulate programmed cell death protein 1 ligand (PD-L1). Expression of PD-L1 was higher in EBV positive NPC cell lines compared with EBV negative cell lines. PD-L1 expression could be increased by exogenous and endogenous induction of LMP1 induced PD-L1. In agreement, expression of PD-L1 was suppressed by knocking down LMP1 in EBV positive cell lines. We further demonstrated that LMP1 up-regulated PD-L1 through STAT3, AP-1, and NF-κB pathways. Besides, IFN-γ was independent of but synergetic with LMP1 in up-regulating PD-L1 in NPC. Furthermore, we showed that PD-L1 was associated with worse disease-free survival in NPC patients. These results imply that blocking both the LMP1 oncogenic pathway and PD-1/PD-L1 checkpoints may be a promising therapeutic approach for EBV positive NPC patients.
Objective
The sphingosine-1-phosphate receptor agonist fingolimod (FTY720), that has shown efficacy in advanced multiple sclerosis clinical trials, decreases reperfusion injury in heart, liver and kidney. We therefore tested the therapeutic effects of fingolimod in several rodent models of focal cerebral ischemia. To assess the translational significance of these findings, we asked whether fingolimod improved long-term behavioral outcomes, whether delayed treatment was still effective, and whether neuroprotection can be obtained in a second species.
Methods
We used rodent models of middle cerebral artery occlusion and cell culture models of neurotoxicity and inflammation to examine the therapeutic potential and mechanisms of neuroprotection by fingolimod.
Results
In a transient mouse model, fingolimod reduced infarct size, neurological deficit, edema and the number of dying cells in the core and periinfarct area. Neuroprotection was accompanied by decreased inflammation, as fingolimod-treated mice had fewer activated neutrophils, microglia/macrophages, and ICAM-1-positive blood vessels. Fingolimod-treated mice showed a smaller infarct and performed better in behavioral tests up to 15 days after ischemia. Reduced infarct was observed in a permanent model even when mice were treated 4 hours after ischemic onset. Fingolimod also decreased infarct size in a rat model of focal ischemia. Fingolimod did not protect primary neurons against glutamate excitotoxicity or hydrogen peroxide, but decreased ICAM-1 expression in brain endothelial cells stimulated by TNFalpha.
Interpretation
These findings suggest that anti-inflammatory mechanisms, and possibly vasculo-protection, rather than direct effects on neurons, underlie the beneficial effects of fingolimod after stroke. S1P receptors are a highly promising target in stroke treatment.
Instruction via a mobile social media app, in conjunction with regular instruction, increases subjective measures of adequacy of bowel preparation. Use of the app significantly increased the proportion of patients with successful cecal intubation and in whom adenomas were detected, indicating increased quality of colonoscopy. ClinicalTrials.gov number: NCT02140827.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.