Eczema is frequently the first manifestation of an atopic diathesis and alteration in the diversity of gut microbiota has been reported in infants with eczema. To identify specific bacterial communities associated with eczema, we conducted a case-control study of 50 infants with eczema (cases) and 51 healthy infants (controls). We performed high-throughput sequencing for V3–V4 hypervariable regions of the 16S rRNA genes from the gut fecal material. A total of 12,386 OTUs (operational taxonomic units) at a 97% similarity level were obtained from the two groups, and we observed a difference in taxa abundance, but not the taxonomic composition, of gut microbiota between the two groups. We identified four genera enriched in healthy infants: Bifidobacterium, Megasphaera, Haemophilus and Streptococcus; and five genera enriched in infants with eczema: Escherichia/Shigella, Veillonella, Faecalibacterium, Lachnospiraceae incertae sedis and Clostridium XlVa. Several species, such as Faecalibacterium prausnitzii and Ruminococcus gnavus, that are known to be associated with atopy or inflammation, were found to be significantly enriched in infants with eczema. Higher abundance of Akkermansia muciniphila in eczematous infants might reduce the integrity of intestinal barrier function and therefore increase the risk of developing eczema. On the other hand, Bacteroides fragilis and Streptococcus salivarius, which are known for their anti-inflammatory properties, were less abundant in infants with eczema. The observed differences in genera and species between cases and controls in this study may provide insight into the link between the microbiome and eczema risk.
Current evidences show that copy number variations (CNVs) are linked to complex phenotypic traits. Leptin receptor (LEPR) gene plays a critical role in energy homeostasis and fat development and re-sequencing of the cattle genome revealed the CNV region (herein referred to as "I3 DNA") within the LEPR intron 3. In the present study, we qualified copy numbers of I3 DNA within LEPR gene in four cattle breeds (Qinchuan, Nanyang, Jinnan and Xianan) by quantitative PCR, and explored their impacts on LEPR gene expression and phenotypic traits in Qinchuan and Nanyang cattle. The results showed that more individuals in Nanyang are with loss of the I3 DNA copy number than that in the others. Additionally, I3 DNA CNVs exhibited a significant negative correlation with LEPR gene expression (P < 0.05). Association analysis showed that gain/normal copy number types performed better traits of body weight, body height and body length than the loss type in Nanyang. To the best of our knowledge, this is the first evidence of the association between LEPR CNVs and cattle traits, and this may help deep understanding of the function of CNVs which may be promising markers for beef cattle breeding and genetics.
Copy number variations (CNVs) recently have been recognized as an important source of genetic variability. Compelling evidence has indicated that CNVs are responsible for phenotypic traits by altering the copy numbers of functional genes. The molecule interacting with CasL-like protein 2 (MICAL-L2) gene plays a critical role in muscle fiber development and has been identified in the CNV region by comparative genomic hybridization array. In the present study, we detected the different distributions of MICAL-L2 gene copy numbers in four Chinese cattle breeds (QC, NY, LX, and CY) and investigated the functional effects of MICAL-L2 CNVs on the gene's expression level and the phenotypic traits in QC and NY cattle. The results showed that the copy number loss (relative to Angus cattle) was more frequent in CY than in the other breeds. The MICAL-L2 gene copy number presented a moderate negative correlation with the transcriptional expression in fetal skeletal muscles (P < 0.05). Statistical analysis revealed that the MICAL-L2 CNVs were significantly associated with body weight, body height, and body length of NY cattle in the early stages (6 and 12 months old), and the copy number loss showed better traits than the gain and/or median groups (P < 0.05). No significance was found at the late stages in QC (24 months old) and NY cattle (18 and 24 months old). These observations provided further insight into the associations between cattle CNVs and economic traits, suggesting that the CNVs may be considered promising markers for the molecular breeding of Chinese beef cattle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.