An outbreak of coronavirus disease 2019 (COVID-19) 1-3 , caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 4 , has spread globally. Countermeasures are needed to treat and prevent further dissemination of the virus. Here we report the isolation of two specific human monoclonal antibodies (termed CA1 and CB6) from a patient convalescing from COVID-19. CA1 and CB6 demonstrated potent SARS-CoV-2-specific neutralization activity in vitro. In addition, CB6 inhibited infection with SARS-CoV-2 in rhesus monkeys in both prophylactic and treatment settings. We also performed structural studies, which revealed that CB6 recognizes an epitope that overlaps with angiotensin-converting enzyme 2 (ACE2)-binding sites in the SARS-CoV-2 receptor-binding domain, and thereby interferes with virus-receptor interactions by both steric hindrance and direct competition for interface residues. Our results suggest that CB6 deserves further study as a candidate for translation to the clinic.
SUMMARYPlant cuticle is an extracellular lipid-based matrix of cutin and waxes, which covers aerial organs and protects them from many forms of environmental stress. We report here the characterization of CER8/LACS1, one of nine Arabidopsis long-chain acyl-CoA synthetases thought to activate acyl chains. Mutations in LACS1 reduced the amount of wax in all chemical classes on the stem and leaf, except in the very long-chain fatty acid (VLCFA) class wherein acids longer than 24 carbons (C 24 ) were elevated more than 155%. The C 16 cutin monomers on lacs1 were reduced by 37% and 22%, whereas the C 18 monomers were increased by 28% and 20% on stem and leaf, respectively. Amounts of wax and cutin on a lacs1-1 lacs2-3 double mutant were much lower than on either parent, and lacs1-1 lacs2-3 had much higher cuticular permeability than either parent. These additive effects indicate that LACS1 and LACS2 have overlapping functions in both wax and cutin synthesis. We demonstrated that LACS1 has synthetase activity for VLCFAs C 20 -C 30 , with highest activity for C 30 acids. LACS1 thus appears to function as a very long-chain acyl-CoA synthetase in wax metabolism. Since C 16 but not C 18 cutin monomers are reduced in lacs1, and C 16 acids are the next most preferred acid (behind C 30 ) by LACS1 in our assays, LACS1 also appears to be important for the incorporation of C 16 monomers into cutin polyester. As such, LACS1 defines a functionally novel acyl-CoA synthetase that preferentially modifies both VLCFAs for wax synthesis and long-chain (C 16 ) fatty acids for cutin synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.