Birefringence, which modulates the polarization of electromagnetic wave, has been commercially developed and widely used in modern photonics. Fostered by high-frequency signal processing and communications, feasible birefringence technologies operating in gigahertz (GHz) range are highly desired. Here, a coherent phonon-induced GHz optical birefringence and its manipulation in SrTiO 3 (STO) crystals are demonsrated. With ultrafast laser pumping, the coherent acoustic phonons with low damping are created in the transducer/STO structures. A series of transducer layers are examined and the optimized one with relatively high photon-phonon conversion efficiency, i.e., semiconducting LaRhO 3 film, is obtained. The most intriguing finding here is that, by virtue of high sensitivity to strain perturbation of STO, GHz optical birefringence can be induced by the coherent acoustic phonons and the birefringent amplitudes possess crystal orientation dependence. Optical manipulation of both coherent phonons and its induced GHz birefringence by double pump technique are also realized. These findings reveal an alternative mechanism of ultrafast optical birefringence control, and offer prospects for applications in high-frequency acoustic-optics devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.