It is more than 50 years since the lysosome was discovered. Since then its hydrolytic machinery, including proteases and other hydrolases, has been fairly well identified and characterized. Among these are the cysteine cathepsins, members of the family of papain-like cysteine proteases. They have unique reactive-site properties and an uneven tissue-specific expression pattern. In living organisms their activity is a delicate balance of expression, targeting, zymogen activation, inhibition by protein inhibitors and degradation. The specificity of their substrate binding sites, small-molecule inhibitor repertoire and crystal structures are providing new tools for research and development. Their unique reactive-site properties have made it possible to confine the targets simply by the use of appropriate reactive groups. The epoxysuccinyls still dominate the field, but now nitriles seem to be the most appropriate "warhead". The view of cysteine cathepsins as lysosomal proteases is changing as there is now clear evidence of their localization in other cellular compartments. Besides being involved in protein turnover, they build an important part of the endosomal antigen presentation. Together with the growing number of non-endosomal roles of cysteine cathepsins is growing also the knowledge of their involvement in diseases such as cancer and rheumatoid arthritis, among others. Finally, cysteine cathepsins are important regulators and signaling molecules of an unimaginable number of biological processes. The current challenge is to identify their endogenous substrates, in order to gain an insight into the mechanisms of substrate degradation and processing. In this review, some of the remarkable advances that have taken place in the past decade are presented. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.
BACKGROUNDAmong breast cancers without human epidermal growth factor receptor 2 (HER2) amplification, overexpression, or both, a large proportion express low levels of HER2 that may be targetable. Currently available HER2-directed therapies have been ineffective in patients with these "HER2-low" cancers. METHODSWe conducted a phase 3 trial involving patients with HER2-low metastatic breast cancer who had received one or two previous lines of chemotherapy. (Low expression of HER2 was defined as a score of 1+ on immunohistochemical [IHC] analysis or as an IHC score of 2+ and negative results on in situ hybridization.) Patients were randomly assigned in a 2:1 ratio to receive trastuzumab deruxtecan or the physician's choice of chemotherapy. The primary end point was progression-free survival in the hormone receptor-positive cohort. The key secondary end points were progression-free survival among all patients and overall survival in the hormone receptor-positive cohort and among all patients. RESULTSOf 557 patients who underwent randomization, 494 (88.7%) had hormone receptor-positive disease and 63 (11.3%) had hormone receptor-negative disease. In the hormone receptor-positive cohort, the median progression-free survival was 10.1 months in the trastuzumab deruxtecan group and 5.4 months in the physician's choice group (hazard ratio for disease progression or death, 0.51; P<0.001), and overall survival was 23.9 months and 17.5 months, respectively (hazard ratio for death, 0.64; P = 0.003). Among all patients, the median progression-free survival was 9.9 months in the trastuzumab deruxtecan group and 5.1 months in the physician's choice group (hazard ratio for disease progression or death, 0.50; P<0.001), and overall survival was 23.4 months and 16.8 months, respectively (hazard ratio for death, 0.64; P = 0.001). Adverse events of grade 3 or higher occurred in 52.6% of the patients who received trastuzumab deruxtecan and 67.4% of those who received the physician's choice of chemotherapy. Adjudicated, drug-related interstitial lung disease or pneumonitis occurred in 12.1% of the patients who received trastuzumab deruxtecan; 0.8% had grade 5 events. CONCLUSIONSIn this trial involving patients with HER2-low metastatic breast cancer, trastuzumab deruxtecan resulted in significantly longer progression-free and overall survival than the physician's choice of chemotherapy. (Funded by Daiichi Sankyo and AstraZeneca; DESTINY-Breast04 ClinicalTrials.gov number, NCT03734029.
These findings disclose a novel regulatory pathway that is composed of HRCR, miR-223, and ARC. Modulation of their levels provides an attractive therapeutic target for the treatment of cardiac hypertrophy and heart failure.
Rationale: Sustained cardiac hypertrophy is often accompanied by maladaptive cardiac remodeling leading to decreased compliance and increased risk for heart failure. Maladaptive hypertrophy is considered to be a therapeutic target for heart failure. MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) have various biological functions and have been extensively investigated in past years.Objective: We identified miR-489 and lncRNAs (cardiac hypertrophy related factor, CHRF) from hypertrophic cardiomyocytes. Here, we tested the hypothesis that miR-489 and CHRF can participate in the regulation of cardiac hypertrophy in vivo and in vitro. Methods and Results:A microarray was performed to analyze miRNAs in response to angiotensin II treatment, and we found miR-489 was substantially reduced. Enforced expression of miR-489 in cardiomyocytes and transgenic overexpression of miR-489 both exhibited reduced hypertrophic response on angiotensin II treatment. We identified myeloid differentiation primary response gene 88 (Myd88) as a miR-489 target to mediate the function of miR-489 in cardiac hypertrophy. Knockdown of Myd88 in cardiomyocytes and Myd88-knockout mice both showed attenuated hypertrophic responses. Furthermore, we explored the molecular mechanism by which miR-489 expression is regulated and found that an lncRNA that we named CHRF acts as an endogenous sponge of miR-489, which downregulates miR-489 expression levels. CHRF is able to directly bind to miR-489 and regulate Myd88 expression and hypertrophy. Conclusions:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.