Schizophrenic patients tend to have reduced incidence of some cancers due to the treatment of antipsychotic drugs with antitumor effects, such as chlorpromazine and trifluoperazine (TFP). Forkhead Box O1 (FOXO1) as tumor suppressor in many malignancies is often inactivated by nuclear export, which could be inhibited by TFP. However, the antitumor efficiency of TFP and related role of FOXO1 in hepatocellular carcinoma (HCC) are unclear. Thus, two HCC cell lines SMMC-7721 and Bel-7402 were treated with different concentrations of TFP and the IC50 was determined. We found that TFP could inhibit the vitality of two cell lines and induce cell cycle arrest at G0/G1. Meanwhile, the apoptosis was also increased and the ability of migration or invasion was found to be impaired by TFP. Interestingly, TFP reversed the cytoplasmic localization of FOXO1 to nuclear and increased its expression in nuclear, and increased the ratio of Bax/Bcl-2. However, knockdown of FOXO1 significantly abrogated the TFP-induced apoptosis by decreasing the Bcl-2 expression [corrected]. Furthermore, we found that TFP in vivo could effectively restrict the angiogenesis and tumor growth with reduced expression of VEGF, Bcl-2, and PCNA, and increased the nuclear localization of FOXO1, which indicated its antitumor role in HCC.
Colorectal cancer (CRC) continues to be one of the most malignant cancers with a high mortality rate to date. Promoting the radio‐responsiveness of CRC is of great importance for local control and prognosis. In this study, we examined the roles of exosomal microRNA‐19b (miR‐19b) in CRC radioresistance. The regulatory role of miR‐19b in CRC stem cells and radiotherapy‐resistant cells was determined using miRNA microarray analysis, and its prognostic value was probed using the TCGA database. It was found that miR‐19b was overexpressed in CRC tissues, which indicated a poor prognosis. CRC‐derived exosomes (EXOs) enhanced the radio‐resistance and stemness properties of CRC cells via delivery of miR‐19b in vitro and in vivo. FBXW7 was identified as a putative target of miR‐19b. On the contrary, reintroduction of FBXW7 reversed the effects of miR‐19b on radioresistance and stemness properties. Furthermore, the Wnt/β‐catenin pathway activity was elevated in CRC cells upon EXOs treatment, decreased after miR‐19b downregulation, and increased again after FBXW7 downregulation. These results suggest that miR‐19b inhibition could enhance the efficacy of radiotherapy while reducing the stemness properties, thus presenting a promising strategy for sensitizing CRC cells to radiotherapy.
ABIN-1, also called TNIP1, is an ubiquitin-binding protein that serves an important role in suppressing RIPK1-independent apoptosis, necroptosis, and NF-κB activation. However, the involvement of ABIN-1 in the regulation of RIPK1-dependent apoptosis (RDA) is unknown. In this study, we found that poly(I:C) + TAK1 inhibitor 5Z-7-oxozeaenol (P5) concurrently induces RDA and necroptosis in Abin-1−/−, but not in Abin-1+/+ mouse embryonic fibroblasts (MEFs). Upon P5 stimulation, cells initially die by necroptosis and subsequently by RDA. Furthermore, we explored the therapeutic effect of ABIN-1 deficiency in necroptosis-based cancer therapy in colorectal cancer (CRC). We found that poly(I:C) + 5Z-7-oxozeaenol + IDN-6556 (P5I) yields a robust pro-necroptosis response, and ABIN-1 deficiency additionally enhances this P5I-induced necroptosis. Moreover, phase I/II cIAP inhibitor birinapant with clinical caspase inhibitor IDN-6556 (BI) alone and 5-fluorouracil with IDN-6556 (FI) alone are sufficient to induce necroptotic cell death in CRC cells by promoting auto-secretion of tumor necrosis factor (TNF); ABIN-1 deficiency amplifies the BI- or FI-induced necroptosis. Two independent xenograft experiments using HT-29 or COLO205 cells show that both BI and P5I remarkably inhibit tumor growth via necroptosis activation. For poly(I:C)-induced cell death, the sensitizing effect of ABIN-1 deficiency on cell death may be attributed to increased expression of TLR3. In TNF-induced necroptosis, ABIN-1 deficiency increases TNF-induced RIPK1 polyubiquitination by reducing the recruitment of ubiquitin-editing enzyme A20 to the TNFR1 signaling complex and induces more TNF secretion in CRC cells upon pro-necroptosis stimulation. With this combined data, ABIN-1 deficiency promotes greater sensitization of CRC cells to necroptosis.
Conventional neurostimulation systems for preclinical research can be bulky and invasive due to the need for batteries or wired interfaces. Emerging as a new neural interface technique, ultrasound-powered piezoelectric neural stimulators work by converting ultrasound energy to electrical charge for neural stimulation. In addition to the benefits of wireless powering and miniaturization leading to less traumatic surgery, piezoelectric neural stimulators can also exhibit prolonged operational lifetimes for a long-term stable neural interface, and show promise for clinical translation. As one of first steps to demonstrate the value of ultrasound-powered piezoelectric neural interface, Li et al. developed a piezoelectric stimulator to activate spinal cord neural circuits for locomotion restoration in a rat model with spinal cord injury (SCI) and compared its efficacy with conventional electrical stimulation (ES). From the point of view of materials science, neural engineering and microelectronics, we provide our commentary on the article, highlighting its importance and discussing the issues that remain to be addressed in future studies in the emerging field of ultrasound powered piezoelectric neurostimulation devices.
Radiotherapy represents the most effective nonsurgical therapy, whereas acquired radioresistance remains a major challenge in glioma treatment. Deregulation of long noncoding RNAs (lncRNAs) is frequently involved in tumorigenesis. This study investigates the role of LINC01123 in radioresistance in glioma with molecules involved. LINC01123 was identified as the most upregulated gene in a glioma gene expression dataset GSE103227. LINC01123 was highly expressed in the radioresistant glioma tissues radioresistant glioma U251 (U251R) cells. Downregulation of LINC01123 reduced cell proliferation and colony formation abilities, as well as resistance to apoptosis of the U251R cells after 4 Gy X‐ray irradiation. The micro(mi)RNA‐151a gene (miR‐151a) was a poorly expressed miRNA in glioma, and it was a target of LINC01123. The centromere protein B gene (CENPB) mRNA was a direct target of miR‐151a and demonstrated a positive correlation with LINC01123 in glioma tissues and cells. Further inhibition of miR‐151a or overexpression of CENPB restored radioresistance of glioma cells. In addition, silencing of LINC01123 suppressed growth of xenograft tumors formed by U251R cells in nude mice. To conclude, the present study demonstrates that LINC01123 serves as a sponge for miR‐151a and upregulates CENPB expression to increase the radioresistance of glioma cells in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.