The up-regulation and nuclear relocation of epithelial-mesenchymal transition (EMT) regulator Twist1 have been implicated in the tumor invasion and metastasis of human hepatocellular carcinoma (HCC). The term vasculogenic mimicry (VM) refers to the unique capability of aggressive tumor cells to mimic the pattern of embryonic vasculogenic networks. However, the relationship between Twist1 and VM formation is not clear. In this study, we explored HCC as a VM and EMT model in order to investigate the role of Twist1 in VM formation. We first examined the expression of Twist1 in human HCC samples and cell lines and found that Twist1 was frequently overexpressed in the nuclear relocation occurring in VM-positive HCCs (13/18 [72%]). Twist1 nuclear expression was likewise significantly associated with VM formation. Clinicopathological analysis revealed that both VM and Twist1 nuclear expressions present shorter survival durations than those without expression. We consistently demonstrated that an overexpression of Twist1 significantly enhanced cell motility, invasiveness, and VM formation in an HepG2 cell. Conversely, a knockdown of Twist1 by the short hairpin RNA approach remarkably reduced Bel7402 cell migration, invasion, and VM formation. Using chromatin immunoprecipitation, we also showed that Twist1 binds to the vascular endothelial (VE)-cadherin promoter and enhances its activity in a transactivation assay. Conclusion: The results of this study indicate that Twist1 induces HCC cell plasticity in VM cells more through the suppression of E-cadherin expression and the induction of VE-cadherin up-regulation than through the VM pattern in vivo and in a three-dimensional in vitro system. Our findings also demonstrate a novel cogitation in cancer stem-like cell differentiation and that related molecular pathways may be used as novel therapeutic targets for the inhibition of HCC angiogenesis and metastasis. (HEPATOLOGY 2010;51:545-556.)
Vasculogenic mimicry (VM) refers to the unique capability of aggressive tumor cells to mimic the pattern of embryonic vasculogenic networks. In the study we demonstrated that CD133 expression was the highest in triple-negative (TN) breast cancer specimens. Importantly, VM showed statistical correlation with CD133(+) expression. The presence of the close relationship between VM and CD133(+) expression might be central for TN tumor relapse and progression. The TN breast cancer cell line, MDA-MB-231 cells developed a range of colony morphologies paralleling the holoclone, meroclone and paraclone morphologies produced by normal keratinocytes and other epithelial cancer cell lines when plated at clonal densities. Holoclone cells were capable of forming more colonies on soft agar than meroclone cells and paraclone cells, suggesting that holoclone cells had higher self-renew potential and might harbors cancer stem cells (CSCs) subpopulation. Strikingly, it was holoclone that displayed CD133(+) phenotype and formed VM. In addition, holoclone acquired endothelial cell marker vascular endothelial-cadherin expression and upregulated VM mediators matrix metalloproteinase (MMP)-2 and MMP-9 expression. The subpopulation with holoclone morphology, CD133(+) phenotype and CSCs characteristics might have the capacity of transdifferentiation and contributed to VM in TN breast cancer. The related molecular pathways may be used as novel therapeutic targets for the inhibition of angiogenesis and metastasis in TN breast carcinoma.
Twist is a critical epithelial-mesenchymal transition (EMT)-inducing transcription factor that increases expression of vimentin. How Twist1 regulates this expression remains unclear. Here, we report that Twist1 regulates Cullin2 (Cul2) circular RNA to increase expression of vimentin in EMT. Twist1 bound the Cul2 promoter to activate its transcription and to selectively promote expression of Cul2 circular RNA (circ-10720), but not mRNA. circ-10720 positively correlated with Twist1, tumor malignance, and poor prognosis in hepatocellular carcinoma (HCC). Twist1 promoted vimentin expression by increasing levels of circ-10720, which can absorb miRNAs that target vimentin. circ-10720 knockdown counteracted the tumor-promoting activity of Twist1 and in patient-derived xenograft and diethylnitrosamine-induced TetOn-Twist1 transgenic mouse HCC models. These data unveil a mechanism by which Twist1 regulates vimentin during EMT. They also provide potential therapeutic targets for HCC treatment and provide new insight for circular RNA (circRNA)-based diagnostic and therapeutic strategies. A circRNA-based mechanism drives Twist1-mediated regulation of vimentin during EMT and provides potential therapeutic targets for treatment of HCC. http://cancerres.aacrjournals.org/content/canres/78/15/4150/F1.large.jpg .
The antiapoptotic protein Bcl-2 plays multiple roles in apoptosis, immunity, and autophagy. Its expression in tumors correlates with tumor grade and malignancy. The recapitulation of the normal developmental process of epithelial-mesenchymal transition (EMT) contributes to tumor cell plasticity. This process is also a characteristic of metastatic cells and vasculogenic mimicry. In the present study we report functional and structural interactions between Bcl-2 and the EMT-regulating transcription factor Twist1 and the relationship with metastasis and vascular mimicry. Bcl-2 and Twist1 are coexpressed under hypoxia conditions. The Bcl-2 can bind to Twist1 in vivo and in vitro. This interaction involves basic helix-loop-helix DNA binding domain within Twist1 and through two separate domains within Bcl-2 protein. Formation of the Bcl-2/Twist1 complex facilitates the nuclear transport of Twist1 and leads to transcriptional activation of wide ranges of genes that can increase the tumor cell plasticity, metastasis, and vasculogenic mimicry. Finally, nuclear expression of Bcl-2 and Twist1 is correlated with poor survival of these patients in a cohort of 97 cases of human hepatocellular carcinoma. Conclusion: The results describe a novel function of Bcl-2 in EMT induction, provide insight into tumor progression, and implicate the Bcl-2/Twist1 complex as a potential target for developing chemotherapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.