Due to the proliferation of global monitoring sensors, the Internet of Things (IoT) is widely used to build smart cities and smart homes. 5G HetNets play an important role in the IoT video stream. This paper proposes an improved Call Session Control Function (CSCF) scheme. The improved CSCF server contains additional modules to facilitate IoT traffic prediction and resource reservation. We highlight traffic prediction in this work and develop a compressed sensing based linear predictor to catch the traffic patterns. Experimental results justify that our proposed scheme can forecast the traffic load with high accuracy but low sampling overhead.
The 5G cellular network is expected to provide core service platform for the expanded Internet of Things (IoT) by supporting enhanced mobile broadband (eMBB), massive machine-type communication (mMTC), and ultra-reliable low latency communications (URLLC). Unmanned aerial vehicles (UAVs), also known as drones, provide civil, commercial, and government services in various fields. Particularly in a 5G IoT scenario, UAV-aided network communications will fulfill an increasingly important role and will require the tracking of multiple UAV targets. As UAVs move quickly, maintaining the stability of the communication connection in 5G will be a challenge. Therefore, it is necessary to track the trajectory of UAVs. At present, the GM-PHD filter has a problem that the new target intensity must be known, and it cannot obtain the moving target trajectory and the influence of the clutter is likely to cause false alarm. A UAV-PHD filter is proposed in this work to improve the traditional GM-PHD filter by applying machine learning to the emergency detection and trajectory tracking of UAV targets. An out-of-sight detection algorithm for multiple UAVs is then presented to improve tracking performance. The method is assessed by simulation using MATLAB, and OSPA distance is utilized as an evaluation indicator. The simulation results illustrate that the proposed method can be applied to the tracking of multiple UAV targets in future 5G-IoT scenarios, and the performance is superior to the traditional GM-PHD filter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.