Virtual synchronous generator technology can effectively improve the anti-interference characteristics of the system frequency and bus voltage in the microgrid, and solve the problems of insufficient damping and low inertia of the system. However, in an islanded microgrid with multiple distributed generation, the difference in line impedance will cause local voltage deviations, which in turn leads to a series of problems, such as reducing power distribution accuracy and increasing bus voltage drop. Therefore, for the island-type microgrid multi-inverter distributed power generation parallel system, in order to solve the problem of low power distribution accuracy and large frequency oscillation caused by system parameters in virtual synchronous generator control, an improved virtual synchronous generator control algorithm based on adaptive droop coefficient is proposed in this paper, which not only eliminates the resistance component of the line impedance, makes the system impedance characteristic present a purely inductive nature, but also realises real-time adjustment of active and reactive power. While maintaining the stability of the bus voltage and system frequency, it maintains high power distribution accuracy and improves the dynamic performance and operational stability of the power grid system.This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Power electronic transformation system is applied widely in industrial control and the application environment is complex. Big, small and medium-sized system power consumption improves continuously, so it is urgent to reduce the system energy consumption problems. This paper proposes a way to reduce the energy consumption of power electronic transformation system based on genetic algorithm. Work frequency regulation and working voltage measurement technology are used in industrial control system and the voltage and frequency produced by system power consumption are calculated. Genetic algorithm is used to calculate the optimal solution. And then achieve the purpose of reducing energy consumption. Experimental results show that this control algorithm can effectively reduce the power consumption of power electronic transformation system in industrial control and has a good effect.
The low-carbon economy will have a profound impact on international trade. With the rapid rise of the low-carbon economy around the world, the international trade pattern will undergo major adjustments; low-carbon economy will innovate carbon finance, and further expand connotation of international service trade; low-carbon economy will promote a new round of technological revolution, promote competition and cooperation in international technology trade and technology transfer; potential conflicts between unilateral trade measures related to low-carbon economy and multilateral trade rules may become new trade barriers.
Abstract-Power electronic transformation system is applied widely in industrial control and the application environment is complex. Big, small and medium-sized system power consumption improves continuously, so it is urgent to reduce the system energy consumption problems. This paper proposes a way to reduce the energy consumption of power electronic transformation system based on genetic algorithm. Work frequency regulation and working voltage measurement technology are used in industrial control system and the voltage and frequency produced by system power consumption are calculated. Genetic algorithm is used to calculate the optimal solution. And then achieve the purpose of reducing energy consumption. Experimental results show that this control algorithm can effectively reduce the power consumption of power electronic transformation system in industrial control and has a good effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.