These findings have critical implications in our current understanding of the rate effects on MLR characteristics which may inspire further studies to explore the characteristics of evoked responses at high rates and deconvolution paradigms.
With the development of Computerized Business Application, the amount of data is increasing exponentially. Cloud computing provides high performance computing resources and mass storage resources for massive data processing. In distributed cloud computing systems, data intensive computing can lead to data scheduling between data centers. Reasonable data placement can reduce data scheduling between the data centers effectively, and improve the data acquisition efficiency of users. In this paper, the mathematical model of data scheduling between data centers is built. By means of the global optimization ability of the genetic algorithm, generational evolution produces better approximate solution, and gets the best approximation of the data placement at last. The experimental results show that genetic algorithm can effectively work out the approximate optimal data placement, and minimize data scheduling between data centers.
To obtain reliable transient auditory evoked potentials (AEPs) from EEGs recorded using high stimulus rate (HSR) paradigm, it is critical to design the stimulus sequences of appropriate frequency properties. Traditionally, the individual stimulus events in a stimulus sequence occur only at discrete time points dependent on the sampling frequency of the recording system and the duration of stimulus sequence. This dependency likely causes the implementation of suboptimal stimulus sequences, sacrificing the reliability of resulting AEPs. In this paper, we explicate the use of continuous-time stimulus sequence for HSR paradigm, which is independent of the discrete electroencephalogram (EEG) recording system. We employ simulation studies to examine the applicability of the continuous-time stimulus sequences and the impacts of sampling frequency on AEPs in traditional studies using discrete-time design. Results from these studies show that the continuous-time sequences can offer better frequency properties and improve the reliability of recovered AEPs. Furthermore, we find that the errors in the recovered AEPs depend critically on the sampling frequencies of experimental systems, and their relationship can be fitted using a reciprocal function. As such, our study contributes to the literature by demonstrating the applicability and advantages of continuous-time stimulus sequences for HSR paradigm and by revealing the relationship between the reliability of AEPs and sampling frequencies of the experimental systems when discrete-time stimulus sequences are used in traditional manner for the HSR paradigm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.