Graphene nanoribbons (GNRs) are of enormous research interest as a promising active component in electronic devices, for example, field-effect transistors (FET). The recently developed "bottomup" on-surface synthesis provides an unprecedented approach for the generation of GNRs on metal surfaces with atomic precision. In order to fabricate well-defined GNRs on surfaces, numerous previous works have been focused on the delicate engineering of building blocks. Lateral fusion of polyphenylene chains into GNRs, as a more flexible method, now has received an increasing attention. However, the lateral fusion into GNRs reported to date is merely limited to the straight GNRs. The GNRs with other topologies potentially displaying distinctive electronic properties are rarely reported. In this work, we report the synthesis of armchair-edged graphene nanoribbons (AGNRs) with zigzag topology for the first time via a stepwise polymerization reaction starting from 4,4″-dibromo-m-terphenyl (DMTP) precursor on Au(111). Self-assembled unreacted monomers, covalent dimers, and zigzag polyphenylene chains are observed at different temperatures. Various GNRs with zigzag topology, including 6-AGNRs, 9-AGNRs, and nanoporous AGNRs are eventually produced through lateral fusion of polyphenylene chains. This study further diversifies the GNR family. Confining the zigzag polyphenylene chains in an ideal arrangement for subsequent lateral fusion can be explored in the future.
Macrocycles have attracted much attention due to their specific "endless" topology, which results in extraordinary properties compared to related linear (open-chain) molecules. However, challenges still remain in their controlled synthesis with well-defined constitution and geometry. Here, we report the successful application of the (pseudo-)high-dilution method to the conditions of on-surface synthesis in ultrahigh vacuum. This approach leads to high yields (up to 84%) of cyclic hyperbenzene ([18]-honeycombene) via an Ullmann-type reaction from 4,4″-dibromo-meta-terphenyl (DMTP) as precursor on a Ag(111) surface. The mechanism of macrocycle formation was explored in detail using scanning tunneling microscopy and X-ray photoemission spectroscopy. We propose that the dominant pathway for hyperbenzene (MTP) formation is the stepwise desilverization of an organometallic (MTP-Ag) macrocycle, which forms via cyclization of (MTP-Ag) chains under pseudo-high-dilution conditions. The high probability of cyclization on the stage of the organometallic phase results from the reversibility of the C-Ag bond. The case is different from that in solution, in which cyclization typically occurs on the stage of a covalently bonded open-chain precursor. This difference in the cyclization mechanism on a surface compared to that in solution stems mainly from the 2D confinement exerted by the surface template, which hinders the flipping of chain segments necessary for cyclization.
Nitrogen heteroatom doping into a triangulene molecule allows tuning its magnetic state. However, the synthesis of the nitrogen-doped triangulene (aza-triangulene) has been challenging. Herein, we report the successful synthesis of azatriangulene on the Au(111) and Ag(111) surfaces, along with their characterizations by scanning tunneling microscopy and spectroscopy in combination with density functional theory (DFT) calculations. Aza-triangulenes were obtained by reducing ketonesubstituted precursors. Exposure to atomic hydrogen followed by thermal annealing and, when necessary, manipulations with the scanning probe afforded the target product. We demonstrate that on Au(111), aza-triangulene donates an electron to the substrate and exhibits an open-shell triplet ground state. This is derived from the different Kondo resonances of the final aza-triangulene product and a series of intermediates on Au(111). Experimentally mapped molecular orbitals match with DFT-calculated counterparts for a positively charged aza-triangulene. In contrast, aza-triangulene on Ag(111) receives an extra electron from the substrate and displays a closed-shell character. Our study reveals the electronic properties of aza-triangulene on different metal surfaces and offers an approach for the fabrication of new hydrocarbon structures, including reactive open-shell molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.