The immune responses of natural killer cells are regulated, in part, by killer cell immunoglobulin-like receptors (KIR). The 16 closely-related genes in the KIR gene system have been diversified by gene duplication and unequal crossing over, thereby generating haplotypes with variation in gene copy number. Allelic variation also contributes to diversity within the complex. In this study, we estimated allele-level haplotype frequencies and pairwise linkage disequilibrium statistics for 14 KIR loci. The typing utilized multiple methodologies by four laboratories to provide at least 2x coverage for each allele. The computational methods generated maximum-likelihood estimates of allele-level haplotypes. Our results indicate the most extensive allele diversity was observed for the KIR framework genes and for the genes localized to the telomeric region of the KIR A haplotype. Particular alleles of the stimulatory loci appear to be nearly fixed on specific, common haplotypes while many of the less frequent alleles of the inhibitory loci appeared on multiple haplotypes, some with common haplotype structures. Haplotype structures cA01 and/or tA01 predominate in this cohort, as has been observed in most populations worldwide. Linkage disequilibrium is high within the centromeric and telomeric haplotype regions but not between them and is particularly strong between centromeric gene pairs KIR2DL5∼KIR2DS3S5 and KIR2DS3S5∼KIR2DL1, and telomeric KIR3DL1∼KIR2DS4. Although 93% of the individuals have unique pairs of full-length allelic haplotypes, large genomic blocks sharing specific sets of alleles are seen in the most frequent haplotypes. These high-resolution, high-quality haplotypes extend our basic knowledge of the KIR gene system and may be used to support clinical studies beyond single gene analysis.
Resistive switching
(RS) devices are emerging electronic components
that could have applications in multiple types of integrated circuits,
including electronic memories, true random number generators, radiofrequency
switches, neuromorphic vision sensors, and artificial neural networks.
The main factor hindering the massive employment of RS devices in
commercial circuits is related to variability and reliability issues,
which are usually evaluated through switching endurance tests. However,
we note that most studies that claimed high endurances >106 cycles were based on resistance versus cycle
plots
that contain very few data points (in many cases even <20), and
which are collected in only one device. We recommend not to use such
a characterization method because it is highly inaccurate and unreliable
(i.e., it cannot reliably demonstrate
that the device effectively switches in every cycle and it ignores
cycle-to-cycle and device-to-device variability). This has created
a blurry vision of the real performance of RS devices and in many
cases has exaggerated their potential. This article proposes and describes
a method for the correct characterization of switching endurance in
RS devices; this method aims to construct endurance plots showing
one data point per cycle and resistive state and combine data from
multiple devices. Adopting this recommended method should result in
more reliable literature in the field of RS technologies, which should
accelerate their integration in commercial products.
Accumulating evidence demonstrates that ferroptosis may be important in the pathophysiological process of traumatic brain injury (TBI). As a major hormone of the pineal gland, melatonin exerts many beneficial effects on TBI, but there is no information regarding the effects of melatonin on ferroptosis after TBI. As expected, TBI resulted in the time‐course changes of ferroptosis‐related molecules expression and iron accumulation in the ipsilateral cortex. Importantly, we found that treating with melatonin potently rescued TBI induced the changes mentioned above and improved functional deficits versus vehicle. Similar results were obtained with a ferroptosis inhibitor, liproxstatin‐1. Moreover, the protective effect of melatonin is likely dependent on melatonin receptor 1B (MT2). Although ferritin plays a vital role in iron metabolism by storing excess cellular iron, its precise function in the brain, and whether it involves melatonin's neuroprotection remain unexplored. Considering ferritin H (Fth) is expressed predominantly in the neurons and global loss of Fth in mice induces early embryonic lethality, we then generated neuron‐specific Fth conditional knockout (Fth‐KO) mice, which are viable and fertile but have altered iron metabolism. In addition, Fth‐KO mice were more susceptible to ferroptosis after TBI, and the neuroprotection by melatonin was largely abolished in Fth‐KO mice. In vitro siFth experiments further confirmed the results mentioned above. Taken together, these data indicate that melatonin produces cerebroprotection, at least partly by inhibiting neuronal Fth‐mediated ferroptosis following TBI, supporting the notion that melatonin is an excellent ferroptosis inhibitor and its anti‐ferroptosis provides a potential therapeutic target for treating TBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.