Summary Nucleosome remodeling and deacetylation (NuRD) complexes are co-transcriptional regulators implicated in differentiation, development and diseases. Methyl-CpG Binding Domain (MBD) proteins play an essential role in recruitment of NuRD complexes to their target sites in chromatin. The related SHREC complex in fission yeast drives transcriptional gene silencing in heterochromatin through cooperation with HP1 proteins. How remodeler and histone deacetylase (HDAC) cooperate within NuRD complexes remains unresolved. We determined that in SHREC the two modules occupy distant sites on the scaffold protein Clr1, and that repressive activity of SHREC can be modulated by the expression level of the HDAC-associated Clr1 domain alone. Moreover, the crystal structure of Clr2 reveals an MBD-like domain mediating recruitment of the HDAC module to heterochromatin. Thus SHREC bi-functionality is organized in two separate modules with separate recruitment mechanisms, which work together to elicit transcriptional silencing at heterochromatic loci.
During the summer of 2008 and 2009, massive algal blooms repeatedly broke out in the Yellow Sea of China. These were undoubtedly caused by the accumulations of one or more species in the macroalgal genus Ulva. In previous reports, morphological observation indicated that the species involved in this phenomenon is Ulva prolifera but molecular analyses indicated that the species belongs to an Ulva linza-procera-prolifera (LPP) clade. Correct identification of the bloom species is required to understand and manage the blooms, but the taxonomic status of the bloom species remains unclear. In the current study, the taxonomic status of 22 selected specimens from the Yellow Sea was assessed by using both morphological and molecular (ITS and rbcL sequences) data. In addition, 5S rDNA analyses were performed for those samples clustering in the LPP clade, and phylogenetic tree and ribotype analyses were constructed for determining the possible origin of the bloom. Three free-floating and two attached Ulva species were distinguished and described: Ulva compressa Linnaeus and Ulva pertusa Kjellman were found in free-floating samples; U. linza Linnaeus was found on rocks; and U. prolifera O.F. Müller was found in both habitats. Diversity in free-floating Ulva of the Yellow Sea appears to be greater than previously thought. The dominant free-floating Ulva species, U. prolifera, was not closely related to local populations attached to rocks but was closely related to populations from Japan.
Many species of Corydalis (Papaveraceae) have been used as medicinal plants in East Asia, and the most well-known species are Corydalis yanhusuo and C. decumbens in the Pharmacopoeia of China. However, authentication of these species remains problematic because of their high morphological variation. Here, we selected 14 closely related species and five genomic regions (chloroplast: matK, trnG, rbcL, psbA-trnH; nuclear: ITS) to explore the utility of DNA barcoding for authenticating these herbs. In addition, the Poisson tree process (PTP) and automatic barcode gap discovery (ABGD) were also used and compared with DNA barcoding. Our results showed that the ITS region was not suitable for molecular analysis because of its heterogeneous nature in Corydalis. In contrast, matK was an ideal region for species identification because all species could be resolved when matK was used along with the other three chloroplast regions. We found that at least five traditional identified species were lumped into one genetic species by ABGD and PTP methods; thus, highlighting the overestimation of species diversity using the morphological approach. In conclusion, our first attempt of molecular analysis of Corydalis herbs presented here successfully resolved the identification of medicinal species and encouraged their taxonomic re-assessment.
The function of ver203, a gene related to vernalization in winter wheat, was investigated by expression of a complementary DNA as an antisense RNA in transgenic plants. A verc203:gus fusion‐expression plasmid was constructed in pBI221, which contains a CaMV (cauliflower mosaic virus) 35S‐promoter, a gus gene and a nos terminator. The construct was then introduced into the plant by the pollen‐tube pathway. The results showed that heading was strongly inhibited in 6 of 326 vernalized antisense transgenic winter wheat plants, until both the vernalized control winter wheat and sense transgenic plants ripened. The hybridization analysis of DNA, amplification of the insert DNA sequences with PCR, northern blot analysis with double‐ and single‐stranded probes, and detection of GUS activity by X‐gluc assay gave strong positive results. This suggests that the VER203 protein plays an important role in controlling heading and flower development in winter wheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.