Cervical cancer is one of the most common types of cancer in women worldwide. Most deaths due to the disease occur in less developed areas of the world. In this work, we introduce a new image dataset along with expert annotated diagnoses for evaluating image-based cervical disease classification algorithms. A large number of Cervigram® images are selected from a database provided by the US National Cancer Institute. For each image, we extract three complementary pyramid features: Pyramid histogram in L*A*B* color space (PLAB), Pyramid Histogram of Oriented Gradients (PHOG), and Pyramid histogram of Local Binary Patterns (PLBP). Other than hand-crafted pyramid features, we investigate the performance of convolutional neural network (CNN) features for cervical disease classification. Our experimental results demonstrate the effectiveness of both our hand-crafted and our deep features. We intend to release this multi-feature dataset and our extensive evaluations using seven classic classifiers can serve as the baseline.
Since the global positioning system (GPS) is not applicable underwater, source localization using wireless sensor networks (WSNs) is gaining popularity in oceanographic applications. Unlike terrestrial WSNs (TWSNs) which uses electromagnetic signaling, underwater WSNs (UWSNs) require underwater acoustic (UWA) signaling. Received signal strength (RSS)-based source localization is considered in this paper due to its practical simplicity and the constraint of low-cost sensor devices, but this area received little attention so far because of the complicated UWA transmission loss (TL) phenomena. In this paper, we address this issue and propose two novel semidefinite programming (SDP) approaches which can be solved more efficiently. The numerical results validate our proposed SDP solvers in underwater environments, and indicate that the placement of the anchor nodes influences the RSS-based localization accuracy similarly as in the terrestrial counterpart. We also highlight that adopting traditional terrestrial RSS-based localization methods will fail in underwater scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.