Microbial fuel cells (MFCs) are devices that use bacteria as the catalysts to oxidize organic and inorganic matter and generate current whereas microbial electrolysis cells (MECs) are a reactor for biohydrogen production by combining MFC and electrolysis. In an MEC, an external voltage must be applied to overcome the thermodynamic barrier. Here we report an MEC-MFC-coupled system for biohydrogen production from acetate, in which hydrogen was produced in an MEC and the extra power was supplied by an MFC. In this coupled system, hydrogen was produced from acetate without external electric power supply. At 10 mM of phosphate buffer, the hydrogen production rate reached 2.2 +/- 0.2 mL L(-1) d(-1), the cathodic hydrogen recovery (RH2) and overall systemic Coulombic efficiency (CEsys) were 88 to approximately 96% and 28 to approximately 33%, respectively, and the overall systemic hydrogen yield (Y(sysH2)) peaked at 1.21 mol-H2 mol-acetate(-1). The hydrogen production was elevated by increasing the phosphate buffer concentration, and the highest hydrogen production rate of 14.9 +/- 0.4 mL L(-1) d(-1) and Y(sysH2) of 1.60 +/- 0.08 mol-H2 mol-acetate(-1) were achieved at 100 mM of phosphate buffer. The performance of the MEC and the MFC was influenced by each other. This MEC-MFC-coupled system has a potential for biohydrogen production from wastes, and provides an effective way for in situ utilization of the power generated from MFCs.
CBS-Q and G3 methods were used to generate a large number of reliable Si-H, P-H and S-H bond dissociation energies (BDEs) for the first time. It was found that the Si-H BDE displayed dramatically different substituent effects compared with the C-H BDE. On the other hand, the P-H and S-H BDE exhibited patterns of substituent effects similar to those of the N-H and O-H BDE. Further analysis indicated that increasing the positive charge on Si of XSiH 3 would strengthen the Si-H bond whereas increasing the positive charge on P and S of XPH 2 and XSH would weaken the P-H and S-H bonds. Meanwhile, increasing the positive charge on Si of 2 XSiH i stabilized the silyl radical whereas increasing the positive charge on P and S in XPH • and XS • destabilized P-and S-centered radicals. These behaviors could be reasonalized by the fact that Si is less electronegative than H while P and S are not. Finally, it was demonstrated that the spin-delocalization effect was valid for the Si-, P-and S-centered radicals.
Hexatriene electrocyclization, if not disfavored by its harsh reaction conditions, can be highly useful for the synthesis of complex organic molecules. Herein we developed a two-layer ONIOM method which could predict the activation free energy of hexatriene electrocyclization with an accuracy of about 1.0 kcal/mol. Using this carefully benchmarked method, we calculated the activation free energies for a variety of substituted hexatrienes. It was found that extraordinarily rapid electrocyclization could occur for certain patterns of captodative substituted hexatrienes, including 2-acceptor-3-donor hexatrienes, 2-acceptor-5-donor hexatrienes, and 3-acceptor-5-donor hexatrienes. The activation free energies for these systems could be up to 10 kcal/mol lower than that of the unsubstituted hexatriene, and therefore, their electrocyclization could proceed smoothly even at room temperature. The mechanism for the captodative effect on hexatriene electrocyclization could be understood by calculating the affinity between the donor and acceptor group in the reactant state and transition state of the reaction. If the affinity was stronger in the transition state, captodative substitution would produce an extra acceleration effect. It was shown that our theoretical results were in excellent agreement with the experimental data from the recent synthetic studies of hexatriene electrocyclizations. Thus, the theoretical tools developed in the present study could be used to predict not only how to accelerate the hexatriene electrocyclization via substituent manipulation but also under what conditions each particular electrocyclization could be accomplished in the real experiment.
A first-principle theoretical protocol was developed that could predict the absolute pK(a) values of over 250 structurally unrelated compounds in DMSO with a precision of 1.4 pK(a) units. On this basis we developed the first theoretical protocol that could predict the standard redox potentials of over 250 structurally unrelated organic anions in DMSO with a precision of 0.11 V. Using the two new protocols we systematically reevaluated the bond dissociation enthalpies (BDEs) measured previously by the electrochemical methods. It was confirmed that for most compounds the empirical equation (BDE = 1.37 pK(HA) + 23.1E(o) + constant) was valid. The constant in this equation was determined to be 74.0 kcal/mol, compared to 73.3 kcal/mol previously reported. Nevertheless, for a few compounds the empirical equation could not be used because the solvation energy changed dramatically during the bond cleavage, which resulted from the extraordinary change of dipole moment during the reaction. In addition, we found 40 compounds (mostly oximes and amides) for which the experimental values were questionable by over 5 kcal/mol. Further analyses revealed that all these questionable BDEs could be explained by one of the three following reasons: (1) the experimental pK(a) value is questionable; (2) the experimental redox potential is questionable; (3) the solvent effect cannot be neglected. Thus, by developing practical theoretical methods and utilizing them to solve realistic problems, we hope to demonstrate that ab initio theoretical methods can now be developed to make not only reliable, but also useful, predictions for solution-phase organic chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.