Achieving sustained drug delivery to mucosal surfaces is a major challenge due to the presence of the protective mucus layer that serves to trap and rapidly remove foreign particulates. Nanoparticles engineered to rapidly penetrate mucosal barriers (mucus-penetrating particles, “MPP”) have shown promise for improving drug distribution, retention and efficacy at mucosal surfaces. MPP are densely coated with polyethylene glycol (PEG), which shields the nanoparticle core from adhesive interactions with mucus. However, the PEG density required to impart the “stealth” properties to nanoparticles in mucus, and thus, uniform distribution in vivo, is still unknown. We prepared biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles with a range of PEG surface densities by blending various ratios of a diblock copolymer of PLGA and 5 kDa poly(ethylene glycol) (PLGA-PEG5k) with PLGA. We then evaluated the impact of PEG surface density, measured using an 1H NMR method, on mucin binding in vitro, nanoparticle transport in freshly obtained human cervicovaginal mucus (CVM) ex vivo, and nanoparticle distribution in the mouse cervicovaginal tract in vivo. We found that at least 5% PEG was required to effectively shield the nanoparticle core from interacting with mucus components in vitro and ex vivo, thus leading to enhanced nanoparticle distribution throughout the mouse vagina in vivo. We then demonstrated that biodegradable MPP could be formulated from blends of PLGA and PLGA-PEG polymers of various molecular weights, and that these MPP provide tunable drug loading and drug release rates and durations. Overall, we describe a methodology for rationally designing biodegradable, drug-loaded MPP for more uniform delivery to the vagina.
Biocompatible nanomaterials and hydrogels have become an important tool for improving cell-based therapies by promoting cell survival and protecting cell transplants from immune rejection. Although their potential benefit has been widely evaluated, it is currently not possible to determine, in vivo, if and how long cells remain viable following their administration without the use of a reporter gene. We here report a pH nanosensor-based magnetic resonance imaging (MRI) technique that can monitor cell death in vivo non-invasively. We demonstrate that specific MRI parameters that change upon cell death of microencapsulated hepatocytes are associated with the measured bioluminescence imaging (BLI) radiance. Moreover, the readout from this pH-sensitive nanosensor can be directly co-registered with high-resolution anatomical images. All the components of these nanosensors are clinical-grade and hence this approach should be a translatable and universal modification of hydrogels.
Background: As one of the most effective triggers with high tissue-penetrating capability and non-invasive feature, ultrasound shows great potential for controlling the drug release and enhancing the chemotherapeutic efficacy. In this study, we report, for the first time, construction of a phase-changeable drug-delivery nanosystem with programmable low-intensity focused ultrasound (LIFU) that could trigger drug-release and significantly enhance anticancer drug delivery.Methods: Liquid-gas phase-changeable perfluorocarbon (perfluoropentane) and an anticancer drug (doxorubicin) were simultaneously encapsulated in two kinds of nanodroplets. By triggering LIFU, the nanodroplets could be converted into microbubbles locally in tumor tissues for acoustic imaging and the loaded anticancer drug (doxorubicin) was released after the microbubble collapse. Based on the acoustic property of shell materials, such as shell stiffness, two types of nanodroplets (lipid-based nanodroplets and PLGA-based nanodroplets) were activated by different acoustic pressure levels. Ultrasound irradiation duration and power of LIFU were tested and selected to monitor and control the drug release from nanodroplets. Various ultrasound energies were introduced to induce the phase transition and microbubble collapse of nanodroplets in vitro (3 W/3 min for lipid nanodroplets; 8 W/3 min for PLGA nanodroplets).Results: We detected three steps in the drug-releasing profiles exhibiting the programmable patterns. Importantly, the intratumoral accumulation and distribution of the drug with LIFU exposure were significantly enhanced, and tumor proliferation was substantially inhibited. Co-delivery of two drug-loaded nanodroplets could overcome the physical barriers of tumor tissues during chemotherapy.Conclusion: Our study provides a new strategy for the efficient ultrasound-triggered chemotherapy by nanocarriers with programmable LIFU capable of achieving the on-demand drug release.
Debunking the mucoadhesion myth: Nonsticky particles for enhanced pulmonary drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.