Numerous current efforts seek to improve the representation of ecosystem ecology and vegetation demographic processes within Earth System Models (ESMs). These developments are widely viewed as an important step in developing greater realism in predictions of future ecosystem states and fluxes. Increased realism, however, leads to increased model complexity, with new features raising a suite of ecological questions that require empirical constraints. Here, we review the developments that
Abstract. The long-term and large-scale dynamics of ecosystems are in large part determined by the performances of individual plants in competition with one another for light, water, and nutrients. Woody biomass, a pool of carbon (C) larger than 50% of atmospheric CO2, exists because of height-structured competition for light. However, most of the current Earth system models that predict climate change and C cycle feedbacks lack both a mechanistic formulation for height-structured competition for light and an explicit scaling from individual plants to the globe. In this study, we incorporate height-structured competition for light, competition for water, and explicit scaling from individuals to ecosystems into the land model version 3 (LM3) currently used in the Earth system models developed by the Geophysical Fluid Dynamics Laboratory (GFDL). The height-structured formulation is based on the perfect plasticity approximation (PPA), which has been shown to accurately scale from individual-level plant competition for light, water, and nutrients to the dynamics of whole communities. Because of the tractability of the PPA, the coupled LM3-PPA model is able to include a large number of phenomena across a range of spatial and temporal scales and still retain computational tractability, as well as close linkages to mathematically tractable forms of the model. We test a range of predictions against data from temperate broadleaved forests in the northern USA. The results show the model predictions agree with diurnal and annual C fluxes, growth rates of individual trees in the canopy and understory, tree size distributions, and species-level population dynamics during succession. We also show how the competitively optimal allocation strategy – the strategy that can competitively exclude all others – shifts as a function of the atmospheric CO2 concentration. This strategy is referred to as an evolutionarily stable strategy (ESS) in the ecological literature and is typically not the same as a productivity- or growth-maximizing strategy. Model simulations predict that C sinks caused by CO2 fertilization in forests limited by light and water will be down-regulated if allocation tracks changes in the competitive optimum. The implementation of the model in this paper is for temperate broadleaved forest trees, but the formulation of the model is general. It can be expanded to include other growth forms and physiologies simply by altering parameter values.
Forests have a key role in global ecosystems, hosting much of the world's terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.
AimTree species diversity can increase the stability of ecosystem productivity by increasing mean productivity and/or reducing the standard deviation in productivity. However, stand structure, environmental and socio‐economic conditions influence plant diversity and might strongly influence the relationships between diversity and stability in natural forest communities. The relative importance of these factors for community stability remains poorly understood in complex (species‐rich) subtropical forests.LocationSubtropical area of southern China.Time period1999–2014.Major taxa studiedForest trees.MethodsWe conducted bivariate analyses to examine the mechanisms (overyielding and species asynchrony) underlying the effects of diversity on stability. Multiple regression models were then used to determine the relative importance of tree species diversity, stand structure, socio‐economic factors and environmental conditions on stability. Structural equation modelling was used to disentangle how these variables directly and/or indirectly affect forest stability.ResultsTree species richness exerted a positive effect on stability through overyielding and species asynchrony, and this effect was stronger in mountainous forests than in hilly forests. Species richness positively affected the mean productivity, whereas species asynchrony negatively affected the variability in productivity, hence increasing forest stability. Structural diversity also had a positive effect, whereas population density had a negative effect on stability. Precipitation variability and slope mainly had indirect influences on stability through their effects on tree species richness.Main conclusionsOverall, tree species diversity governed stability; however, stand structure, socio‐economic conditions and environmental conditions also played an important role in shaping stability in these forests. Our work highlights the importance of regulating stand structure and socio‐economic factors in forest management and biodiversity conservation, to maintain and enhance their stability to provide ecosystem services in the face of unprecedented anthropogenic activities and global climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.