During the non-contact geomagnetic detection of pipeline defects, measured signals generally contain noise, which reduces detection efficiency. Complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) has recently emerged as a signal filtering method, but its filtering performance is influenced by two parameters: the amplitude of added noise and the number of ensemble trials. To solve this issue and improve detection accuracy and distinguishability, a detection method based on improved CEEMDAN (ICEEDMAN) and the Teager energy operator (TEO) is proposed. The magnetic detection signal was first decomposed into a series of intrinsic mode functions (IMFs) by CEEMDAN with initial parameters. Signal IMFs were then distinguished using the Hurst exponent to reconstruct the preliminary filtered signal, and its maximum value (except the zero point) of the normalized autocorrelation function was defined as salp swarm algorithm (SSA) fitness. The optimal parameters that maximize fitness were found by SSA iterations, and their corresponding filtered signal was obtained. Finally, the gradient calculation and TEO were carried out to complete non-contact geomagnetic detection. The results of the simulated signal based on magnetic dipole under a noisy environment and field testing prove that ICEEMDAN denoising has better filtering performance than conventional CEEMDAN denoising methods, and ICEEMDAN-TEO has obvious advantages compared to other detection methods in the aspects of location error, peak side-lobe ratio, and integrated side-lobe ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.