Apple (Malus × domestica) trees are vulnerable to freezing temperatures. However, there has been only limited success in developing cold-hardy cultivars. This lack of progress is due at least partly to lack of understanding of the molecular mechanisms of freezing tolerance in apple. In this study, we evaluated the potential roles for two R2R3 MYB transcription factors (TFs), MYB88 and the paralogous FLP (MYB124), in cold stress in apple and Arabidopsis. We found that MYB88 and MYB124 positively regulate freezing tolerance and cold-responsive gene expression in both apple and Arabidopsis. Chromatin-Immunoprecipitation-qPCR and electrophoretic mobility shift assays showed that MdMYB88/MdMYB124 act as direct regulators of the COLD SHOCK DOMAIN PROTEIN 3 (MdCSP3) and CIRCADIAN CLOCK ASSOCIATED 1 (MdCCA1) genes. Dual luciferase reporter assay indicated that MdCCA1 but not MdCSP3 activated the expression of MdCBF3 under cold stress. Moreover, MdMYB88 and MdMYB124 promoted anthocyanin accumulation and H O detoxification in response to cold. Taken together, our results suggest that MdMYB88 and MdMYB124 positively regulate cold hardiness and cold-responsive gene expression under cold stress by C-REPEAT BINDING FACTOR (CBF)-dependent and CBF-independent pathways.
Conserved genomic context provides critical information for comparative evolutionary analysis. With the increase in numbers of sequenced plant genomes, synteny analysis can provide new insights into gene family evolution. Here, we exploit a network analysis approach to organize and interpret massive pairwise syntenic relationships. Specifically, we analyzed synteny networks of the MADS-box transcription factor gene family using 51 completed plant genomes. In combination with phylogenetic profiling, several novel evolutionary patterns were inferred and visualized from synteny network clusters. We found lineage-specific clusters that derive from transposition events for the regulators of floral development (APETALA3 and PI) and flowering time (FLC) in the Brassicales and for the regulators of root development (AGL17) in Poales. We also identified two large gene clusters that jointly encompass many key phenotypic regulatory Type II MADS-box gene clades (SEP1, SQUA, TM8, SEP3, FLC, AGL6, and TM3). Gene clustering and gene trees support the idea that these genes are derived from an ancient tandem gene duplication that likely predates the radiation of the seed plants and then expanded by subsequent polyploidy events. We also identified angiosperm-wide conservation of synteny of several other less studied clades. Combined, these findings provide new hypotheses for the genomic origins, biological conservation, and divergence of MADS-box gene family members.
Late embryogenesis abundant (LEA) proteins include eight multigene families that are expressed in response to water loss during seed maturation and in vegetative tissues of desiccation tolerant species. To elucidate LEA proteins evolution and diversification, we performed a comprehensive synteny and phylogenetic analyses of the eight gene families across 60 complete plant genomes. Our integrated comparative genomic approach revealed that synteny conservation and diversification contributed to LEA family expansion and functional diversification in plants. We provide examples that: 1) the genomic diversification of the Dehydrin family contributed to differential evolution of amino acid sequences, protein biochemical properties, and gene expression patterns, and led to the appearance of a novel functional motif in angiosperms; 2) ancient genomic diversification contributed to the evolution of distinct intrinsically disordered regions of LEA_1 proteins; 3) recurrent tandem-duplications contributed to the large expansion of LEA_2; and 4) dynamic synteny diversification played a role on the evolution of LEA_4 and its function on plant desiccation tolerance. Taken together, these results show that multiple evolutionary mechanisms have not only led to genomic diversification but also to structural and functional plasticity among LEA proteins which have jointly contributed to the adaptation of plants to water-limiting environments.
SignificanceStudying the organization of genes within genomes across broad evolutionary timescales can advance our understanding of the evolution of traits and clades. We have used a network approach to investigate genome dynamics of mammals and angiosperms. In general, genome organization and gene microcollinearity is much more conserved in mammals than in flowering plants. We then identified the genomic outliers or “rebel genes,” within each clade. Genes that have moved are unusual for mammals, whereas highly conserved single-copy genes are exceptional for plants. How conservation and changes in synteny or fundamental differences in genome organization have contributed to the evolution of lineages could be a new scientific frontier.
, Z. (2019). Lipophagy mediated carbohydrate-induced changes of lipid metabolism via oxidative stress, endoplasmic reticulum (ER) stress and ChREBP/PPAR pathways. Cellular and Molecular Life Sciences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.