Link prediction in complex networks has attracted increasing attention from both physical and computer science communities. The algorithms can be used to extract missing information, identify spurious interactions, evaluate network evolving mechanisms, and so on. This article summaries recent progress about link prediction algorithms, emphasizing on the contributions from physical perspectives and approaches, such as the random-walk-based methods and the maximum likelihood methods. We also introduce three typical applications: reconstruction of networks, evaluation of network evolving mechanism and classification of partially labelled networks. Finally, we introduce some applications and outline future challenges of link prediction algorithms.
Abstract. Missing link prediction of networks is of both theoretical interest and practical significance in modern science. In this paper, we empirically investigate a simple framework of link prediction on the basis of node similarity. We compare nine well-known local similarity measures on six real networks. The results indicate that the simplest measure, namely Common Neighbors, has the best overall performance, and the Adamic-Adar index performs the second best. A new similarity measure, motivated by the resource allocation process taking place on networks, is proposed and shown to have higher prediction accuracy than common neighbors. It is found that many links are assigned same scores if only the information of the nearest neighbors is used. We therefore design another new measure exploited information of the next nearest neighbors, which can remarkably enhance the prediction accuracy.PACS. 89.75.-k Complex systems -05.65.+b Self-organized systems
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.