The combination of rigid acridine donor and 1,8-naphthalimide acceptor has afforded two orange-red emitters of NAI-DMAC and NAI-DPAC with high rigidity in molecular structure and strongly pretwisted charge transfer state. Endowed with high photoluminescence quantum yields (Φ ), distinct thermally activated delayed fluorescence (TADF) characteristics, and preferentially horizontal emitting dipole orientations, these emitters afford record-high orange-red TADF organic light-emitting diodes (OLEDs) with external quantum efficiencies of up to 21-29.2%, significantly surpassing all previously reported orange-to-red TADF OLEDs. Notably, the influence of microcavity effect is verified to support the record-high efficiency. This finding relaxes the usually stringent material requirements for effective TADF emitters by comprising smaller radiative transition rates and less than ideal Φ s.
Developing high‐efficiency solution‐processable thermally activated delayed‐fluorescence (TADF) emitters, especially in longer wavelength regions, is a formidable challenge. Three red TADF emitters, namely NAI_R1, NAI_R2, and NAI_R3, are developed by phenyl encapsulation and tert‐butyl substitution on a prototypical 1,8‐naphthalimide‐acridine hybrid. This design strategy not only grants these molecules high solubility, excellent thermal stability, and good film‐forming ability, but also pulls down their charge‐transfer (CT) energy levels excited states. Furthermore, dispersing these emitters into two different host materials of mCP and mCPCN finely tailors their CT‐state energy levels. More importantly, a synergistic combination of molecular engineering and host selection can effectively manipulate the competition between the radiative and nonradiative decay rates of the CT singlet states of these emitters and the reverse intersystem crossing from their triplet to singlet states. Consequently, the optimal combination of NAI_R3 emitter and mCP host successfully results in a state‐of‐the‐art external quantum efficiency (EQE) of 22.5% for solution‐processed red TADF organic light‐emitting diodes (OLEDs) with an emission peak above 620 nm. This finding demonstrates that a synergistic strategy of molecular engineering and host selection with TADF emitters could provide a new pathway for developing efficient solution‐processable TADF systems.
A triarylboron/phenoxazine hybrid TADF emitter exhibits efficient reverse intersystem crossing and the device achieves a maximum external quantum efficiency of 13.9%.
A two-dimensional symmetric hybrid plasmonic waveguide that integrates two high-refractive-index dielectric slabs with a finite-width insulator-metal-insulator (IMI) structure is proposed, and the characteristics of its long-range propagation mode are numerically analyzed at 1550 nm wavelength. In contrast to the previously studied structures, the gap between the slabs and the metal stripe and the associated field enhancement effect result in the dramatically modified modal behavior. It is shown that, under optimized configurations, the transmission loss can be reduced significantly with little change in the mode confinement capability compared to similar dielectric-loaded surface plasmon polariton waveguides. Studies on the crosstalk between adjacent such hybrid waveguides reveal the ability to increase the integration density by approximately 60 times compared with the traditional IMI structures when used in 3D photonic circuits. The studied waveguide could be an interesting alternative to realize high density photonic circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.