Diversity-oriented synthesis of fused tetracyclic 6,11-dihydroquinoxalino[2,3-b]quinolines is described via a sequential Ugi-variant multicomponent reaction and Pd-catalyzed bis-annulation in one-pot process.
SummaryA novel three-component reaction has been developed to assemble biologically and pharmaceutically important tetracyclic fused imidazo[1,2-a]pyridines in a one-pot fashion utilizing readily available 2-aminopyridines, isatins and isocyanides. The three-component coupling proceeds through the Groebke–Blackburn–Bienaymé reaction followed by a retro-aza-ene reaction and subsequent nucleophilic reaction of the in-situ generated imidazo[1,2-a]pyridines bearing an isocyanate functional group.
Diversity-oriented synthesis of the biologically intriguing imidazo[1,2-a]pyridine-fused isoquinoline systems from readily available starting materials was achieved through the Groebke–Blackburn–Bienaymé reaction followed by a gold-catalyzed cyclization strategy. The synthetic approach is characterized by mild reaction conditions and a broad substrate scope, allowing for the rapid construction of structurally complex and diverse heterocycles in moderate to good yields.
SummarySant-75 is a newly identified potent inhibitor of the hedgehog pathway. We designed a diversity-oriented synthesis program, and synthesized a series of Sant-75 analogues, which lays the foundation for further investigation of the structure–activity relationship of this important class of hedgehog-pathway inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.