Background: Myocardial ischemia/reperfusion (MI/R) is one of the most important links in myocardial injury, causing damage to cardiac tissues including cell apoptosis, oxidative stress, and other serious consequences. Asiaticoside (AS), a new compound synthesized from genistein, is cardioprotective. This paper presents new evidence for the protective role of AS against MI/R injury in vitro and in vivo. Methods: First, BALB/c mice underwent surgical ligation of the left anterior descending (LAD) artery to establish an MI/R animal model, and HL-1 cells were subjected to oxygen-glucose deprivation/ reperfusion (OGD/R) to establish an in vitro model. Myocardial infarct size was examined by triphenyl tetrazolium chloride (TTC) staining, histopathological changes detected in heart tissues were observed using hematoxylin and eosin (H&E) and Masson staining, heart tissue apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Enzyme-linked immunosorbent assay (ELISA) kits were used to analyze cardiac troponin I (CTnI), creatine kinase-muscle and brain (CK-MB), lactate dehydrogenase (LDH), superoxide dismutase (SOD), malondialdehyde (MDA), and reduced glutathione (GSH). Cell viability was evaluated using Cell Counting Kit-8 (CCK-8) and live/dead assay. Cell apoptosis, reactive oxygen species (ROS), mitochondrial membrane potential, and mitochondrial superoxide were detected by flow cytometry and fluorescence microscopy. Both the protein expression in myocardial tissues and cardiomyocytes were examined by western blot. Results: In the in vivo MI/R experiments,pretreatment of AS reduced myocardial infarct size, decrease leakage of myocardial enzyme, suppressed myocardial apoptosis, myocardial collagen deposition, and oxidative stress. In the in vitro OGD/R experiments, HL-1 cells pretreated with AS had increased cell viability, decreased apoptosis rates and depolarization of mitochondrial membrane potential, and attenuated intracellular ROS and mitochondrial superoxide. Moreover, AS downregulated the expression of apoptotic protein, and promoted phosphorylation of PI3K, AKT, and GSK3β, which was reversed by PI3K inhibitor LY294002. Conclusions: The AS compound protects against MI/R injury by attenuating oxidative stress and apoptosis via activating the PI3K/AKT/GSK3β pathway in vivo and vitro.
Chemotherapeutic insensitivity is a major obstacle for effective treatment of hepatocellular carcinoma (HCC). Recently, new evidence showed that microRNAs (miRNAs) are closely related to drug sensitivity. This study aimed to investigate the relationship between miR-138 expression and cisplatin sensitivity of HCC cells by regulation of EZH2. CCK-8, EdU, and western blotting are determining the cell viability, proliferation, EZH2, and EMT-related protein expression. It was found that compared with normal samples, miR-138 expression was lower in cancer tissue; it was also downregulated in HCC cells. Transfected with miR-138 mimic increased sensitivity of HCC cells to cisplatin. Mechanistically, Luciferase Reporter analysis verified the interaction between miR-138 and target gene EZH2. Inhibition of EZH2 enhanced cisplatin sensitivity and transfection with EZH2 mimic mirrored the function of miR-138 in cisplatin sensitivity. Furthermore, the role of miR-138 on reversed cisplatin-induced epithelial–mesenchymal transition (EMT) was attenuated when combined with EZH2 plasmid. In conclusion, all data from this study illustrate that miR-138 may as a tumor suppressor provides a potential treatment method to treating HCC.
Background: Hypoxia is an important cause of myocardial injury due to the heart's high susceptibility to hypoxia. Astragaloside IV (AS-IV) is the main component of Astragalus membranaceus and could exert cardiac protective role. Here, the effect of AS-IV on hypoxia-injured H9c2 cardiomyocytes was elucidated. Methods: First, H9c2 cells were exposed to hypoxia and/or AS-IV treatment. Cell apoptosis, death, and viability as well as hypoxia-inducible factor 1α (HIF-1α) expression and apoptotic proteins were analyzed. Next, transfection of si-HIF-1α into H9c2 cells was carried out to test whether upregulation and stabilization of HIF-1α influences the effect of AS-IV on hypoxia-treated H9c2 cells. Furthermore, the regulatory role of Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling on HIF-1α levels was examined. Results: Hypoxia suppressed viability and promoted the apoptosis and death of H9c2 cells. AS-IV eliminated hypoxia-induced H9c2 injury. Moreover, HIF-1α signaling was further activated and stabilized by AS-IV in hypoxia-challenged H9c2 cells. Downregulation of HIF-1α suppressed the function of AS-IV in hypoxia-challenged H9c2 cells. AS-IV promoted JAK2/STAT3 signaling in hypoxia-induced injury. The beneficial functions of AS-IV in hypoxia-exposed H9c2 cells were linked to HIF-1α upregulation and JAK2/ STAT3 signaling activation. Conclusions: AS-IV relieved H9c2 cardiomyocyte injury after hypoxia, possibly by activating JAK2/ STAT3-mediated HIF-1α signaling.
Background: Myocardial infarction (MI) has a high mortality and disability rate and greatly affects human health. This study sought to explore the therapeutic effect and molecular mechanism of 3'-daidzein sulfonate (DSS) on MI. Methods: A rat MI model was established and low and high doses of DSS were administered to the rats. An in vitro oxygen glucose deprivation model was used to verify the treatment role and mechanism of DSS. The establishment of the rat MI model was confirmed by electrocardiogram. The tissue changes were detected by HE, Masson's trichrome, TUNEL and TTC staining. Cell viability was detected by CCK-8. The viable and dead cells were detected by Calcein-AM/PI. Apoptotic cells, ROS and JC-1 were detected by flow cytometry apoptosis. The level of proteins was detected by western blotting. MDA, SOD and GSH were detected by ELISA. Results: The results of Hematoxylin and eosin, TUNEL, and Masson staining showed that the myocardial tissue of the MI group was repaired by DSS. The serum levels of cardiac troponin I (CTnI), lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), and malondialdehyde (MDA) were decreased by DSS, while the serum levels of superoxide dismutase and glutathione were promoted by DSS. The treatment of DSS activated the Nuclear Factor Erythroid 2-Related Factor 2 (NRF-2)/Heme Oxygenase 1 (HO-1) pathway and inhibited the caspase-3 apoptosis pathway. The in vitro experiment showed that DSS greatly restored cell viability and reduced cell apoptosis. DSS also greatly inhibited mitochondrial membrane potential depolarization, reactive oxygen species production, and oxidative stress. The application of the NRF-2 inhibitor, C 29 H 25 N 3 O 4 S (ML385), greatly inhibited the treatment role of DSS and the NRF-2/HO-1 pathway, and activated the caspase-3 apoptosis pathway. Conclusions: In conclusion, this study first identified the beneficial role of DSS in MI. DSS protected myocardial cells by activating the NRF-2/HO-1 pathway and inhibiting cell apoptosis. DSS could be used as a novel drug in the treatment of MI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.