Biomimetic research indicates that many phenomena regarding wettability in nature, such as the self-cleaning effect on a lotus leaf and cicada wing, the anisotropic dewetting behavior on a rice leaf, and striking superhydrophobic force provided by a water strider's leg, are all related to the unique micro- and nanostructures on the surfaces. It gives us much inspiration to realize special wettability on functional surfaces through the cooperation between the chemical composition and the surface micro- and nanostructures, which may bring great advantages in a wide variety of applications in daily life, industry, and agriculture. This Account reviews recent progress in these aspects.
From soaking wet to bone dry: The concept of reversible switching between superhydrophilicity and superhydrophobicity of a surface (see picture) exploits the thermally responsive wettability of poly(N‐isopropylacrylamide), and this property is enhanced by surface roughness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.