Social media is o en viewed as a sensor into various societal events such as disease outbreaks, protests, and elections. We describe the use of social media as a crowdsourced sensor to gain insight into ongoing cyber-a acks. Our approach detects a broad range of cyber-a acks (e.g., distributed denial of service (DDOS) a acks, data breaches, and account hijacking) in an unsupervised manner using just a limited xed set of seed event triggers. A new query expansion strategy based on convolutional kernels and dependency parses helps model reporting structure and aids in identifying key event characteristics. rough a large-scale analysis over Twi er, we demonstrate that our approach consistently identi es and encodes events, outperforming existing methods.
Modeling and forecasting forward citations to a patent is a central task for the discovery of emerging technologies and for measuring the pulse of inventive progress. Conventional methods for forecasting these forward citations cast the problem as analysis of temporal point processes which rely on the conditional intensity of previously received citations. Recent approaches model the conditional intensity as a chain of recurrent neural networks to capture memory dependency in hopes of reducing the restrictions of the parametric form of the intensity function. For the problem of patent citations, we observe that forecasting a patent's chain of citations benefits from not only the patent's history itself but also from the historical citations of assignees and inventors associated with that patent. In this paper, we propose a sequence-tosequence model which employs an attention-ofattention mechanism to capture the dependencies of these multiple time sequences. Furthermore, the proposed model is able to forecast both the timestamp and the category of a patent's next citation. Extensive experiments on a large patent citation dataset collected from USPTO demonstrate that the proposed model outperforms state-of-the-art models at forward citation forecasting.
Deep learning's performance has been extensively recognized recently. Graph neural networks (GNNs) are designed to deal with graph-structural data that classical deep learning does not easily manage. Since most GNNs were created using distinct theories, direct comparisons are impossible. Prior research has primarily concentrated on categorizing existing models, with little attention paid to their intrinsic connections. The purpose of this study is to establish a unified framework that integrates GNNs based on spectral graph and approximation theory. The framework incorporates a strong integration between spatial-and spectral-based GNNs while tightly associating approaches that exist within each respective domain.
Influence blocking maximization (IBM) is crucial in many critical real-world problems such as rumors prevention and epidemic containment. The existing work suffers from: (1) concentrating on uniform costs at the individual level, (2) mostly utilizing greedy approaches to approximate optimization, (3) lacking a proper graph representation for influence estimates. To address these issues, this research introduces a neural network model dubbed Neural Influence Blocking (\algo) for improved approximation and enhanced influence blocking effectiveness. The code is available at https://github.com/oates9895/NIB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.