Existing learning-based image inpainting methods are still in challenge when facing complex semantic environments and diverse hole patterns. The prior information learned from the large scale training data is still insufficient for these situations. Reference images captured covering the same scenes share similar texture and structure priors with the corrupted images, which offers new prospects for the image inpainting tasks. Inspired by this, we first build a benchmark dataset containing 10K pairs of input and reference images for reference-guided inpainting. Then we adopt an encoderdecoder structure to separately infer the texture and structure features of the input image considering their pattern discrepancy of texture and structure during inpainting. A feature alignment module is further designed to refine these features of the input image with the guidance of a reference image. Both quantitative and qualitative evaluations demonstrate the superiority of our method over the state-of-the-art methods in terms of completing complex holes. Code is available at https://github.com/Cameltr/RGTSI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.