Taxi demand prediction is essential to build efficient traffic transportation systems for smart city. It helps to properly allocate vehicles, ease the traffic pressure and improve passengers’ experience. Traditional taxi demand prediction methods mostly rely on time-series forecasting techniques, which cannot model the nonlinearity embedded in data. Recent studies start to combine the Euclidean spatial features through grid-based methods. By considering the spatial correlations among different regions, we can capture how the temporal events have impacts on those with adjacent links or intersections and improve prediction precision. Some graph-based models are proposed to encode the non-Euclidean correlations as well. However, the temporal periodicity of data is often overlooked, and the study units are usually constructed as oversimplified grids. In this paper, we define places with specific semantic and humanistic experiences as study units, using a fuzzy set method based on adaptive kernel density estimation. Then, we introduce dual temporal gated multi-graph convolution network to predict the future taxi demand. Specifically, multi-graph convolution is used to model spatial correlations with graphs, including the neighborhood, functional similarities and landscape similarities based on street view images. As for the temporal dependencies modeling, we design the dual temporal gated branches to capture information hidden in both previous and periodic observations. Experiments on two real-world datasets show the effectiveness of our model over the baselines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.