In recent years, organometal trihalide perovskites have emerged as promising materials for low-cost, flexible, and highly efficient solar cells. Despite their processing advantages, before the technology can be commercialized the poor stability of the organic-inorganic hybrid perovskite materials with regard to humidity, heat, light, and oxygen has be to overcome. Herein, we distill the current state-of-the-art and highlight recent advances in improving the chemical stability of perovskite materials by substitution of the A-cation and X-anion. Our hope is to pave the way for the rational design of perovskite materials to realize perovskite solar cells with unprecedented improvement in stability.
Recent advances in additive engineering for improving the perovskite morphology, charge transport, and excitonic and optical properties have been reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.