The disc-milling method is expected to increase the grooving efficiency of blisks. However, there are few studies about the residual stress on a blisk during disc-milling grooving. In this study, a single-factor experiment and an orthogonal experiment of blisk disc-milling and grooving were designed to obtain the residual stress. Surface subsurface residual stress were also studied. The results showed that the surface of the milling groove bore compressive stress. Residual stress decreased with increasing spindle speed and increased with increasing feed speed and spindle rotation angle. Moreover, residual stress was most sensitive to spindle rotation angle and least sensitive to feed speed. A higher residual stress produced on the machined surface led to a deeper layer of residual stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.