Aim: Aquaporin-2 (AQP2) is a vasopressin-regulated water channel located in the collecting tubule and collecting duct cells of mammalian kidney. The aim of this study is to investigate whether PKCα plays a role in vasopressin-induced AQP2 trafficking in mouse inner medullary collecting duct 3 (mIMCD3) cells. Methods: AQP2-mIMCD3 stable cell line was constructed by transfection of mouse inner medullary collecting duct 3 (mIMCD3) cells with AQP2-GFP construct. Then the cells were transfected with PKCα shRNA, PKCα A/25E, or PKCα scrambled shRNA. The expression levels of PKCα, AQP2, and phospho-S256-AQP2 were analyzed using Western blot. The interaction between AQP2 and PKCα was examined using immunoprecipitation. The distribution of AQP2 and microtubules was studied using immunocytochemistry. The AQP2 trafficking was examined using the biotinylation of surface membranes. Results: Treatment of AQP2-mIMCD3 cells with 100 μmol/L of 1-desamino-8-D-arginine vasopressin (DdAVP) for 30 min stimulated the translocation of AQP2 from the cytoplasm to plasma membrane through influencing the microtubule assembly. Upregulation of active PKCα by transfection with PKCα A/25E plasmids resulted in de-polymerization of α-tubulin and redistributed AQP2 in the cytoplasm. Down-regulation of PKCα by PKCα shRNA partially inhibited DdAVP-stimulated AQP2 trafficking without altering α-tubulin distribution. Although 100 μmol/L of DdAVP increased AQP2 phosphorylation at serine 256, down-regulation of PKCα by PKCα shRNA did not influence DdAVP-induced AQP2 phosphorylation, suggesting that AQP2 phosphorylation at serine 256 was independent of PKCα. Moreover, PKCα did not physically interact with AQP2 in the presence or absence of DdAVP. Conclusion: Our results suggested that PKCα regulates AQP2 trafficking induced by DdAVP via microtubule assembly.
In this study, the effects of hyperosmolality on the expression of urea transporter A2 (UTA2) and aquaporin 2 (AQP2) were investigated in transfected immortalized mouse medullary collecting duct (mIMCD3) cell line. AQP2-GFP-pCMV6 and UTA2-GFP-pCMV6 plasmids were stably transfected into mIMCD3 cells respectively. Transfected mIMCD3 and control cells were cultured in different hypertonic media, which were made by NaCl alone, urea alone, or an equiosmolar mixture of NaCl and urea. The mRNA and protein expression of AQP2 was elevated by the stimulation of NaCl alone, urea alone and NaCl plus urea in AQP2-mIMCD3 cells; whereas NaCl alone and NaCl plus urea rather than urea alone increased the mRNA and protein expression of UTA2 in UTA2-mIMCD3 cells, and all the expression presented an osmolality-dependent manner. Moreover, the mRNA and protein expression of UTA2 rather than AQP2 was found to be synergistically up-regulated by a combination of NaCl and urea in mIMCD3 cells. It is concluded that NaCl and urea synergistically induce the expression of UTA2 rather than AQP2 in mIMCD3 cells, and hyperosmolality probably mediates the expression of AQP2 and UTA2 through different mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.