The external flow field of a 600MW air-cooled unit is numerically simulated based on FLUENT. The distribution law of air flow field of air-cooled unit under different wind speed and wind direction conditions is studied. The influence of wind speed and wind direction on the heat transfer performance of air-cooled unit is analyzed. Predict the exhaust pressure of direct air-cooled unit under the influence of environmental wind. The results show that in the +X direction environmental wind, the first row of air-cooled unit on the windward side is prone to backflow; in the +Y direction environmental wind, the first row of air-cooled unit on the windward side is prone to hot air recirculation. As the wind speed increases, the heat transfer efficiency of the air-cooled unit decreases. The dominant wind direction (WNW) environmental wind has the least impact on the heat transfer efficiency, and the furnace wind (+Y direction wind) has the greatest influence on the heat transfer efficiency. To improve the heat transfer performance of the air-cooled unit under windy conditions, it is necessary to narrow the range of the negative pressure zone below the air-cooled unit and increase the cooling air flow rate of the air-cooled unit.
In the operation of direct air-cooled units, there are many factors that affect the safety and economy of the unit. The “hot air recirculation” and “backfill” phenomena caused by lateral wind, the influence of high ambient wind on the heat transfer performance of the air cooling unit near the windshield wall, and the “hot air recirculation” phenomenon caused by the back wind of the furnace, these may affect the direct air cooling unit. Safe and economical operation. Through carrying out on-site test research, collecting the actual operating conditions of the unit operation, the organic combination of laboratory simulation data and actual data is provided to provide a strong basis for the development of corresponding technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.