No abstract
Nicotinic acetylcholine receptor (AChR) channels at neuromuscular synapses rarely open in the absence of agonists, but many different mutations increase the unliganded gating equilibrium constant (E0) to generate AChRs that are active constitutively. We measured E0 for two different sets of mutant combinations and by extrapolation estimated E0 for wild-type AChRs. The estimates were 7.6 and 7.8 × 10−7 in adult-type mouse AChRs (−100 mV at 23°C). The values are in excellent agreement with one obtained previously by using a completely different method (6.5 × 10−7, from monoliganded gating). E0 decreases with depolarization to the same extent as does the diliganded gating equilibrium constant, e-fold with ∼60 mV. We estimate that at −100 mV the intrinsic energy of the unliganded gating isomerization is +8.4 kcal/mol (35 kJ/mol), and that in the absence of a membrane potential, the intrinsic chemical energy of this global conformational change is +9.4 kcal/mol (39 kJ/mol). Na+ and K+ in the extracellular solution have no measureable effect on E0, which suggests that unliganded gating occurs with only water occupying the transmitter binding sites. The results are discussed with regard to the energy changes in receptor activation and the competitive antagonism of ions in agonist binding.
Receptors alternate between resting↔active conformations that bind agonists with low↔high affinity. Here, we define a new agonist attribute, energy efficiency (η), as the fraction of ligand-binding energy converted into the mechanical work of the activation conformational change. η depends only on the resting/active agonist-binding energy ratio. In a plot of activation energy versus binding energy (an “efficiency” plot), the slope gives η and the y intercept gives the receptor’s intrinsic activation energy (without agonists; ΔG0). We used single-channel electrophysiology to estimate η for eight different agonists and ΔG0 in human endplate acetylcholine receptors (AChRs). From published equilibrium constants, we also estimated η for agonists of KCa1.1 (BK channels) and muscarinic, γ-aminobutyric acid, glutamate, glycine, and aryl-hydrocarbon receptors, and ΔG0 for all of these except KCa1.1. Regarding AChRs, η is 48–56% for agonists related structurally to acetylcholine but is only ∼39% for agonists related to epibatidine; ΔG0 is 8.4 kcal/mol in adult and 9.6 kcal/mol in fetal receptors. Efficiency plots for all of the above receptors are approximately linear, with η values between 12% and 57% and ΔG0 values between 2 and 12 kcal/mol. Efficiency appears to be a general attribute of agonist action at receptor binding sites that is useful for understanding binding mechanisms, categorizing agonists, and estimating concentration–response relationships.
Agonists turn on receptors because they have a higher affinity for active versus resting conformations of the protein. Activation can occur by either of two pathways that connect to form a cycle: Agonists bind to resting receptors that then become active, or resting receptors activate and then bind agonists. We used mutations to construct endplate acetylcholine receptors (AChRs) having only one functional neurotransmitter-binding site and single-channel electrophysiology to measure independently binding constants for four different agonists, to both resting and active conformations of each site. For all agonists and sites, the total free energy change in each pathway was the same, confirming the activation cycle without external energy. Other results show that () there is no cooperativity between sites; () agonist association is slower than diffusion in resting receptors but nearly diffusional in active receptors; () whereas resting affinity is determined mainly by agonist association, active affinity is determined mainly by agonist dissociation; and () at each site and for all agonists, receptor activation approximately doubles the agonist-binding free energy. We discuss a two-step mechanism for binding that involves diffusion and a local conformational change ("catch") that is modulated by receptor activation. The results suggest that binding to a resting site and the switch to high affinity are both integral parts of a single allosteric transition. We hypothesize that catch ensures proper signal recognition in complex chemical environments and that binding site compaction is a determinant of both resting and active affinity.
A muscle acetylcholine receptor (AChR) has two neurotransmitter binding sites located in the extracellular domain, at αδ and either αe (adult) or αγ (fetal) subunit interfaces. We used single-channel electrophysiology to measure the effects of mutations of five conserved aromatic residues at each site with regard to their contribution to the difference in free energy of agonist binding to active versus resting receptors (ΔG B1 ). The two binding sites behave independently in both adult and fetal AChRs. For four different agonists, including ACh and choline, ΔG B1 is ∼−2 kcal/mol more favorable at αγ compared with at αe and αδ. Only three of the aromatics contribute significantly to ΔG B1 at the adult sites (αY190, αY198, and αW149), but all five do so at αγ (as well as αY93 and γW55). γW55 makes a particularly large contribution only at αγ that is coupled energetically to those contributions of some of the α-subunit aromatics. The hydroxyl and benzene groups of loop C residues αY190 and αY198 behave similarly with regard to ΔG B1 at all three kinds of site. ACh binding energies estimated from molecular dynamics simulations are consistent with experimental values from electrophysiology and suggest that the αγ site is more compact, better organized, and less dynamic than αe and αδ. We speculate that the different sensitivities of the fetal αγ site versus the adult αe and αδ sites to choline and ACh are important for the proper maturation and function of the neuromuscular synapse.allosteric protein | ion channel | ligand binding sites | single-channel electrophysiology | synaptic maturation R eceptors at synapses respond to specific chemical signals in the extracellular environment because the active conformation of the protein has a higher affinity for the ligand compared with the resting conformation (1, 2). The active vs. resting difference in binding free energy increases the relative stability of the active state and, hence, the probability of a cellular response. In this report, we describe and distinguish sources of ligandbinding free energy in three kinds of agonist site present in mouse muscle nicotinic acetylcholine receptors (AChRs). Our goal was to use single-channel electrophysiology to assess the relative contribution of significant functional groups to the overall free energy generated by the affinity change at each type of site.At cholinergic synapses, the main chemical signals are ACh released from nerve terminals and choline, which is an ACh precursor, hydrolysis product, and stable component of serum (3). The muscle AChR has central pore surrounded by five subunits of composition α 2 βδe in adult-type and α 2 βδγ in fetal-type (Fig. 1A) (4). The fetal, γ, subunit is essential for proper synapse maturation, and the adult, e, subunit is necessary for proper function of mature synapses (5-7). Each AChR pentamer has two agonist binding sites in the extracellular domain, at αδ and either αe (adult) or αγ (fetal) subunit interfaces.The change in agonist affinity occurs within the global, resting↔active...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.