Automatic screening of diabetic retinopathy (DR) is a well-identified area of research in the domain of computer vision. It is challenging due to structural complexity and a marginal contrast difference between the retinal vessels and the background of the fundus image. As bright lesions are prominent in the green channel, we applied contrast-limited adaptive histogram equalization (CLAHE) on the green channel for image enhancement. This work proposes a novel diabetic retinopathy screening technique using an asymmetric deep learning feature. The asymmetric deep learning features are extracted using U-Net for segmentation of the optic disc and blood vessels. Then a convolutional neural network (CNN) with a support vector machine (SVM) is used for the DR lesions classification. The lesions are classified into four classes, i.e., normal, microaneurysms, hemorrhages, and exudates. The proposed method is tested with two publicly available retinal image datasets, i.e., APTOS and MESSIDOR. The accuracy achieved for non-diabetic retinopathy detection is 98.6% and 91.9% for the APTOS and MESSIDOR datasets, respectively. The accuracies of exudate detection for these two datasets are 96.9% and 98.3%, respectively. The accuracy of the DR screening system is improved due to the precise retinal image segmentation.
In high-dimensional data analysis, Feature Selection (FS) is one of the most fundamental issues in machine learning and requires the attention of researchers. These datasets are characterized by huge space due to a high number of features, out of which only a few are significant for analysis. Thus, significant feature extraction is crucial. There are various techniques available for feature selection; among them, the filter techniques are significant in this community, as they can be used with any type of learning algorithm and drastically lower the running time of optimization algorithms and improve the performance of the model. Furthermore, the application of a filter approach depends on the characteristics of the dataset as well as on the machine learning model. Thus, to avoid these issues in this research, a combination of feature reduction (CFR) is considered designing a pipeline of filter approaches for high-dimensional microarray data classification. Considering four filter approaches, sixteen combinations of pipelines are generated. The feature subset is reduced in different levels, and ultimately, the significant feature set is evaluated. The pipelined filter techniques are Correlation-Based Feature Selection (CBFS), Chi-Square Test (CST), Information Gain (InG), and Relief Feature Selection (RFS), and the classification techniques are Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), and k-Nearest Neighbor (k-NN). The performance of CFR depends highly on the datasets as well as on the classifiers. Thereafter, the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method is used for ranking all reduction combinations and evaluating the superior filter combination among all.
Machine Translation System (MTS) serves as an effective tool for communication by translating text or speech from one language to another language. Recently, neural machine translation (NMT) has emerged to be popular for its performance and cost-effectiveness. However, NMT systems are restricted in translating low-resource languages as it requires huge quantity of data set to learn useful mappings across languages. The need of an efficient translation system becomes obvious in a large multilingual environment like India. Indian Language (ILs) are still treated as low-resource languages due to unavailability of corpora. In order to address such asymmetric nature, multilingual neural machine translation (MNMT) system evolves as an ideal approach in this direction. The MNMT converts many languages using a single model which are extremely useful in terms of training process and lowering online maintenance costs. It is also helpful for improving low-resource translation. In this paper, we propose a MNMT system to address the issues related to low-resource language translation. Our model comprises of two MNMT systems i.e. for English-Indic (one-to-many) and the other for Indic-English (many-to-one) with a shared encoder-decoder containing 15 language pairs (30 translation directions). Since most of IL pairs have scanty amount of parallel corpora, not sufficient for training any machine translation model, we explore various augmentation strategies to improve overall translation quality through the proposed model. A state-of-the-art transformer architecture is used to realize the proposed model. In addition, the paper addresses the use of language relationships (in terms of dialect, script, etc.), particularly about the role of high-resource languages of the same family in boosting the performance of low-resource languages. Moreover, the experimental results also show the advantage of backtranslation and domain adaptation for ILs to enhance the translation quality of both source and target languages. Using all these key approaches, our proposed model emerges to be more efficient than the baseline model in terms of evaluation metrics i.e BLEU (BiLingual Evaluation Understudy) score for a set of ILs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.