Pd-catalyzed hydroalkynylations were developed that involve ligand-enabled regiodivergent addition of an alkyne to an allenamide, giving branched and linear products stereoselectively and facilitated by the neighboring amide group. Regioselectivity was achieved with the use of (o-OMePh) P and BrettPhos, which allowed the functionalization of various alkynes, including steroids, carbohydrates, alkaloids, chiral ligands, and vitamins. Based on the experimental results, it was proposed that hydro- and carbopalladation processes operated during the formations of the branched and linear products, respectively.
The Au(I)-catalyzed regioselective hydration of γ-acetoxy-α,β-acetylinic ester by the assistance of a neighboring carbonyl group has been developed. Varieties of simple primary, secondary, and tertiary γ-acetoxy-α,β-acetylinic esters, even those bearing sensitive functional group in the remote reaction sites, are selectively hydrated to the corresponding β-keto esters. The reaction tolerates a wide variety of other carboxylates, such as benzoates, propionates, acrylates, and pivalates, including chiral carboxylates with retention of the configuration. The broad substrate scope, including the derivatization of complex natural products and neutral and open air conditions, makes this atom economical approach very practical. (18)O labeling experiments disclose that the oxygen transposition occurs from the carboxylate group to the triple bond, not from water.
Reported is the utilization of electronically biased conjugated alkynes in the development of highly diastereo- and regioselective dearomative [2 + 2] cycloadditions, alkenylations, and ring expansions of electron-rich indoles. Regioselective protonations of cross- and linear-conjugated alkynes were found to be crucial for accessing various cyclobutene-fused indoline and alkenylated indole derivatives. Furthermore, the facile ring expansion of [2 + 2] keto adducts, which were successfully synthesized from ynones, provided 1 H-benzo[ b]azepine scaffolds.
A metal-free oxyacetoxylation method of primary, secondary and tertiary propargylic carboxylates with retention of chirality was presented. The reaction proceeds through the intramolecular nucleophilic attack of the neighboring carbonyl group on an alkynyliodonium intermediate. The process is general with broad substrate scope and is amenable for application to a variety of propargyl carboxylates including those obtained from natural products. Insight into the mechanistic pathway by isotopic labelling (using H 2 O 18 and D 2 O) and controlled experiments confirmed.
A formal
haloalkynylation of allenamides has been described for
the synthesis of highly stereo- and regioselective skipped halo enynes.
Exclusive γ-regioselectivity is achieved through the intermediacy
of a conjugated N-tosyliminium intermediatedirect
evidence for the formation of which was validated by NMR and HRMS.
Quantum mechanical computations reveal that the reactive intermediate
geometry is key to controlling the 1,2- or 1,4-regioselectivity of
alkyne interception. Divergent access to elusive unsaturated systems
has also been reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.