Diagnosis of Epilepsy is immensely important but challenging process, especially while using traditional manual seizure detection methods with the help of neurologists or brain experts’ guidance which are time consuming. Thus, an automated classification method is require to quickly detect seizures and non-seizures. Therefore, a machine learning algorithm based on a modified XGboost classifier model is employed to detect seizures quickly and improve classification accuracy. A focal loss function is employed with traditional XGboost classifier model to minimize mismatch of training and testing samples and enhance efficiency of the classification model. Here, CHB-MIT SCALP Electroencephalography (EEG) dataset is utilized to test the proposed classification model. Here, data gathered for all 24 patients from CHB-MIT Database is used to analyze the performance of proposed classification model. Here, 2-class-seizure experimental results of proposed classification model are compared against several state-of-art-seizure classification models. Here, cross validation experiments determine nature of 2-class-seizure as the prediction is seizure or non-seizure. The metrics results for average sensitivity and average specificity are nearly 100%. The proposed model achieves improvement in terms of average sensitivity against the best traditional method as 0.05% and for average specificity as 1%. The proposed modified XGBoost classifier model outperforms all the state-of-art-seizure detection techniques in terms of average sensitivity, average specificity.
One of the most dangerous neurological disease, which is occupying worldwide, is epilepsy. Fraction of second nerves in the brain starts impulsion i.e. electrical discharge, which is higher than the normal pulsing. So many researches have done the investigation and proposed the numerous methodology. However, our methodology will give effective result in feature extraction. Moreover, we used numerous number of statistical moments features. Existing approaches are implemented on few statistical moments with respect to time and frequency. Our proposed system will give the way to find out the seizure-effected part of the brain very easily using TDS, FDS, Correlation and Graph presentation. The resultant value will give the huge difference between normal and seizure effected brain. It also explore the hidden features of the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.