The part of speech (PoS) tagging is a core component in many natural language processing (NLP) applications. In fact, the PoS taggers contribute as a preprocessing step in various NLP tasks, such as syntactic parsing, information extraction, machine translation, and speech synthesis. In this paper, we examine the performance of a modern standard Arabic (MSA) based tagger for the classical (i.e., traditional or historical) Arabic. In this work, we employed the Stanford Arabic model tagger to evaluate the imperative verbs in the Holy Quran. In fact, the Stanford tagger contains 29 tags; however, this work experimentally evaluates just one that is the VB ≡ imperative verb. The testing set contains 741 imperative verbs, which appear in 1,848 positions in the Holy Quran. Despite the previously reported accuracy of the Arabic model of the Stanford tagger, which is 96.26% for all tags and 80.14% for unknown words, the experimental results show that this accuracy is only 7.28% for the imperative verbs. This result promotes the need for further research to expose why the tagging is severely inaccurate for classical Arabic. The performance decline might be an indication of the necessity to distinguish between training data for both classical and MSA Arabic for NLP tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.