Placental malaria, characterized by sequestration of Plasmodium falciparum in the maternal placental blood space and associated inflammatory damage, contributes to poor birth outcomes and ~200,000 infant deaths annually. Specific mechanisms that contribute to placental damage and dysfunction during malaria are not completely understood. To investigate a potential role for oxidative stress, antioxidant genes and markers for oxidative damage were assessed by quantitative PCR and immunohistochemistry in Plasmodium chabaudi AS-infected pregnant mice. Widespread evidence of lipid peroxidation was observed and was associated with higher antioxidant gene expression in conceptuses of infected mice. To assess the extent to which this oxidative damage might contribute to poor birth outcomes and be amenable to therapeutic intervention, infected pregnant mice were treated with N-acetylcysteine, a free radical scavenger, or tempol, an intracellular superoxide dismutase mimetic. The results show that mice treated with N-acetylcysteine experienced malaria induced–pregnancy loss at the same rate as control animals and failed to mitigate placental oxidative damage. In contrast, tempol-treated mice exhibited subtle improvement in embryo survival at gestation day 12. Although lipid peroxidation was not consistently reduced in the placentas of these mice, it was inversely related to embryo viability. Moreover, reduced IFN-γ and CCL2 plasma levels in treated mice were associated with midgestational embryo viability. Thus, although oxidative stress is remarkable in placental malaria and its mitigation by antioxidant therapy may improve pregnancy outcomes, the underlying mechanistic basis and potential therapeutic strategies require additional investigation.
BackgroundActivation of the A2A adenosine receptor (A2AAR) decreases production of inflammatory cytokines, prevents C. difficile toxin A-induced enteritis and, in combination with antibiotics, increases survival from sepsis in mice. We investigated whether A2AAR activation improves and A2AAR deletion worsens outcomes in a murine model of C. difficile (strain VPI10463) infection (CDI).MethodsC57BL/6 mice were pretreated with an antibiotic cocktail prior to infection and then treated with vancomycin with or without an A2AAR agonist. A2AAR-/- and littermate wild-type (WT) mice were similarly infected, and IFNγ and TNFα were measured at peak of and recovery from infection.ResultsInfected, untreated mice rapidly lost weight, developed diarrhea, and had mortality rates of 50-60%. Infected mice treated with vancomycin had less weight loss and diarrhea during antibiotic treatment but mortality increased to near 100% after discontinuation of antibiotics. Infected mice treated with both vancomycin and an A2AAR agonist, either ATL370 or ATL1222, had minimal weight loss and better long-term survival than mice treated with vancomycin alone. A2AAR KO mice were more susceptible than WT mice to death from CDI. Increases in cecal IFNγ and blood TNFα were pronounced in the absence of A2AARs.ConclusionIn a murine model of CDI, vancomycin treatment resulted in reduced weight loss and diarrhea during acute infection, but high recurrence and late-onset death, with overall mortality being worse than untreated infected controls. The administration of vancomycin plus an A2AAR agonist reduced inflammation and improved survival rates, suggesting a possible benefit of A2AAR agonists in the management of CDI to prevent recurrent disease.
Introduction Plasmodium chabaudi AS-infection in pregnant A/J and C57BL/6J mice results in mid-gestational pregnancy loss. Although associated with increased systemic and placental pro-inflammatory responses and coagulopathy, the molecular mechanisms that underlie poor pregnancy outcomes in these mice are not yet fully understood. This study investigates the relationships between inflammation, apoptosis and malaria-induced pregnancy loss. Methods Infection with Plasmodium chabaudi AS in early murine pregnancy and term human placental tissues from an endemic setting were assessed by histology, immunohistochemistry, TUNEL staining, real-time PCR, flow cytometry, western blot, and ELISA. Results Quantitative PCR reveals accumulation of lymphocytes and monocytes and upregulation of chemokines that attract these cell types in malaria-exposed mid-gestational A/J conceptuses. Monocyte accumulation is confirmed by flow cytometry and placental immunohistochemistry. Concurrent with initiation of malaria-induced abortion, markers of apoptosis are evident in the junctional zone, but not the labyrinth, of A/J placentae. In contrast, mid-gestation conceptuses in infected C57BL/6J lack evidence for monocyte accumulation, exhibiting low or no in situ placental staining despite trophoblast immunoreactivity for the monokine, CCL2. Additionally, placental apoptosis is not consistently observed, and when evident, appears after malaria-induced abortion typically initiates. Similarly, trophoblast apoptosis in term human placental malaria is not observed. Of those studied, a sole common feature of malaria-induced abortion in A/J and C57BL/6J mice is elevation of plasma tumor necrosis factor. Discussion Consistent with our previous observations, tumor necrosis factor is likely to be a central driver of malaria-induced pregnancy loss in both strains, but likely operates through mechanisms distinct from placental apoptosis in C57BL/6J mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.