The accurate assessment of buildings to assess their performance across a range of parameters is an essential part of understanding both new and retrofit buildings. The growing understanding of the performance gap in terms of its assessment and characterisation relies on effective methods of analysis. Here, we evaluate an experimental whole house method, known as QUB. As with many whole building approaches the method establishes heat loss through transmission and ventilation losses. This study compares QUB against an alternative, established, whole house test known as coheating. It was applied in a whole house test facility under controlled conditions. The test property, a solid wall pre-1919 UK archetype, was retrofit using a set of commercially available products and then the retrofit was removed in stages. At each of these stages a QUB test, which commonly takes one night, and coheating test, which can take few weeks, were applied. The objective of the study was to provide a comparison between the new method and more established method in terms of accuracy. The two methods showed close agreement in terms of results, suggesting that the quicker test has great potential as a more practical and economic test. There were higher levels of uncertainty with the QUB method due to shorter measurement periods. The lack of full boundary conditions within the test facility should be considered a limitation in applying the findings directly to the field. However, this study indicates the potential for QUB in validating performance, warranting further investigation.
The residential sector is responsible for 29% of the total energy consumption of the UK, with 62% of this energy being used for space heating. Heat loss through the fabric of building elements is a crucial factor in the energy efficiency of homes, and a wide number of studies have looked at physical interventions to improve the energy efficiency of existing buildings, commonly called retrofit. This research considers the impact of window coverings on reducing heat loss from homes, a measure that is not commonly considered an energy efficiency intervention. Although the amount of glazing varies widely between homes, all windows are a significant factor contributing to heat loss. While physical changes such as double and triple glazing can improve the energy performance of buildings, the impact of curtains and blinds is not well characterised. Previous research into window coverings has been undertaken using laboratory tests, such as hotbox and small climatic chamber environments. This study presents the impact of window coverings on heat loss within a unique whole house test facility. This allows for a better replication of a real heating system and the effects that it has on localised heat transfer. This gives a more detailed picture of in situ performance, similar to that which may be found in the field.
The energy consumed by domestic space heating systems represents a considerable share of the energy consumed in the UK. At the same time up to a quarter of English homes have inadequate controls on the central heating systems. Current modelling tools, and results from the limited field trials that have been carried out, are problematic due to the influence of the behaviour of occupants and variability of weather conditions. The Salford Energy House is a full-sized end terrace house built within a climate controlled laboratory. This allows a house of typical construction to be extensively analysed while completely disconnected from the unpredictability of weather conditions and human behaviour. This paper presents a series of tests carried out in the Salford Energy House into the effectiveness of installing room thermostats and thermostatic radiator valves. Savings of 40% in terms of energy consumption, cost and CO 2 were achieved. The results should be regarded with caution in terms of their extent and application to real homes, but represent a significant contribution to the gap in current knowledge due to the ability to isolate the performance of homes from uncooperative variables, and a potential base for the development of more effective modelling tools. Practical application: This research provides evidence to support installation and use of room thermostats and thermostatic radiator valves as an effective means of reducing domestic energy consumption and overheating.
has been developed based on the conductimetric results obtained for the titration of either ZrOCl2 or ZrCl4 in SOCl2 with a SOCl2 solution of Me4NCl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.