Synthetic turf fields cushioned with crumb rubber may be a source of chemical exposure to those playing on the fields. Benzothiazole (BZT) may volatilize from crumb rubber and result in inhalation exposure. Benzothiazole has been the primary rubber-related chemical found in synthetic turf studies. However, risks associated with BZT have not been thoroughly assessed, primarily because of gaps in the database. This assessment provides toxicity information for a human health risk assessment involving BZT detected at five fields in Connecticut. BZT exerts acute toxicity and is a respiratory irritant and dermal sensitizer. In a genetic toxicity assay BZT was positive in Salmonella in the presence of metabolic activation. BZT metabolism involves ring-opening and formation of aromatic hydroxylamines, metabolites with mutagenic and carcinogenic potential. A structural analogue 2-mercaptobenzothiazole (2-MBZT) was more widely tested and so is used as a surrogate for some endpoints. 2-MBZT is a rodent carcinogen with rubber industry data supporting an association with human bladder cancer. The following BZT toxicity values were derived: (1) acute air target of 110 μg/m(3) based upon a BZT RD(50) study in mice relative to results for formaldehyde; (2) a chronic noncancer target of 18 μg/m(3) based upon the no-observed-adverse-effect level (NOAEL) in a subchronic dietary study in rats, dose route extrapolation, and uncertainty factors that combine to 1000; (3) a cancer unit risk of 1.8E-07/μg-m(3) based upon a published oral slope factor for 2-MBZT and dose-route extrapolation. While there are numerous uncertainties in the BZT toxicology database, this assessment enables BZT to be quantitatively assessed in risk assessments involving synthetic turf fields. However, this is only a screening-level assessment, and research that better defines BZT potency is needed.
Questions have been raised regarding possible exposures when playing sports on synthetic turf fields cushioned with crumb rubber. Rubber is a complex mixture with some components possessing toxic and carcinogenic properties. Exposure is possible via inhalation, given that chemicals emitted from rubber might end up in the breathing zone of players and these players have high ventilation rates. Previous studies provide useful data but are limited with respect to the variety of fields and scenarios evaluated. The State of Connecticut investigated emissions associated with four outdoor and one indoor synthetic turf field under summer conditions. On-field and background locations were sampled using a variety of stationary and personal samplers. More than 20 chemicals of potential concern (COPC) were found to be above background and possibly field-related on both indoor and outdoor fields. These COPC were entered into separate risk assessments (1) for outdoor and indoor fields and (2) for children and adults. Exposure concentrations were prorated for time spent away from the fields and inhalation rates were adjusted for play activity and for children's greater ventilation than adults. Cancer and noncancer risk levels were at or below de minimis levels of concern. The scenario with the highest exposure was children playing on the indoor field. The acute hazard index (HI) for this scenario approached unity, suggesting a potential concern, although there was great uncertainty with this estimate. The main contributor was benzothiazole, a rubber-related semivolatile organic chemical (SVOC) that was 14-fold higher indoors than outdoors. Based upon these findings, outdoor and indoor synthetic turf fields are not associated with elevated adverse health risks. However, it would be prudent for building operators to provide adequate ventilation to prevent a buildup of rubber-related volatile organic chemicals (VOC) and SVOC at indoor fields. The current results are generally consistent with the findings from studies conducted by New York City, New York State, the U.S. Environmental Protection Agency (EPA), and Norway, which tested different kinds of fields and under a variety of weather conditions.
The primary purpose of this study was to characterize the concentrations of volatile organic compounds (VOC), semivolatile organic compounds (SVOC), rubber-related chemicals such as benzothiazole (BZT) and nitrosamine, and particulate matter (PM(10)) in air at synthetic turf crumb rubber fields. Both new and older fields were evaluated under conditions of active use. Three types of fields were targeted: four outdoor crumb rubber fields, one indoor facility with crumb rubber turf, and an outdoor natural grass field. Background samples were collected at each field on grass. Personal air sampling was conducted for VOC, BZT, nitrosamines, and other chemicals. Stationary air samples were collected at different heights to assess the vertical profile of release. Air monitoring for PM(10) was conducted at one height. Bulk samples of turf grass and crumb rubber were analyzed, and meteorological data were recorded. Results showed that personal concentrations were higher than stationary concentrations and were higher on turf than in background samples for certain VOC. In some cases, personal VOC concentrations from natural grass fields were as high as those on turf. Naphthalene, BZT, and butylated hydroxytoluene (BHT) were detected in greater concentration at the indoor field compared to the outdoor fields. Nitrosamine air levels were below reporting levels. PM(10) air concentrations were not different between on-field and upwind locations. All bulk lead (Pb) samples were below the public health target of 400 ppm. More research is needed to better understand air quality at indoor facilities. These field investigation data were incorporated into a separate human health risk assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.