New evidence suggests that cold-loving (psychrophilic) bacteria may be a dynamic component of the episodic bloom events of high-latitude ecosystems. Here we report the results of an unusually early springtime study of pelagic microbial activity in the coastal Alaskan Arctic. Heterotrophic bacterioplankton clearly responded to an algal bloom by doubling cell size, increasing the fraction of actively respiring cells (up to an unprecedented 84% metabolically active using redox dye CTC), shifting substrate-uptake capabilities from kinetic parameters better adapted to lower substrate concentrations to those more suited for higher concentrations, and more than doubling cell abundance. Community composition (determined by polymerase chain reaction/DGGE and nucleotide sequence analysis) also shifted over the bloom. Results support, for the first time with modern molecular methods, previous culture-based observations of bacterial community succession during Arctic algal blooms and confirm that previously observed variability in pelagic microbial activity can be linked to changes in community structure. During early bloom stages, virioplankton and bacterial abundance were comparable, suggesting that mortality due to phage infection was low at that time. The virus-to-bacteria ratio (VBR) increased 10-fold at the height of the bloom, however, suggesting an increased potential for bacterioplankton mortality resulting from viral infection. The peak in VBR coincided with observed shifts in both microbial activity and community structure. These early-season data suggest that substrate and virioplankton interactions may control the active microbial carbon cycling of this region.
To evaluate what drives phytoplankton photosynthesis rates in the Amundsen Sea Polynya (ASP), Antarctica, during the spring bloom, we studied phytoplankton biomass, photosynthesis rates, and water column productivity during a bloom of Phaeocystis antarctica (Haptophyceae) and tested effects of iron (Fe) and light availability on these parameters in bioassay experiments in deck incubators. Phytoplankton biomass and productivity were highest (20 µg chlorophyll a L −1 and 6.5 g C m −2 d −1 ) in the central ASP where sea ice melt water and surface warming enhanced stratification, reducing mixed layer depth and increasing light availability. In contrast, maximum photosynthesis rate (P * max ), initial light-limited slope of the photosynthesis-irradiance curve (a *), and maximum photochemical efficiency of photosystem II (F v / F m ) were highest in the southern ASP near the potential Fe sources of the Dotson and Getz ice shelves. In the central ASP, P * max , a *, and F v / F m were all lower. Fe addition increased phytoplankton growth rates in three of twelve incubations, and at a significant level when all experiments were analyzed together, indicating Fe availability may be rate-limiting for phytoplankton growth in several regions of the ASP early in the season during build-up of the spring bloom. Moreover, Fe addition increased P * max , a*, and F v / F m in almost all experiments when compared to unamended controls. Incubation under high light also increased P * max , but decreased F v / F m and a * when compared to low light incubation. These results indicate that the lower values for P * max , a*, and F v / F m in the central ASP, compared to regions close to the ice shelves, are constrained by lower Fe availability rather than light availability. Our study suggests that higher Fe availability (e.g., from higher melt rates of ice shelves) would increase photosynthesis rates in the central ASP and potentially increase water column productivity 1.7-fold, making the ASP even more productive than it is today.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.